CS 470: Unix/Linux Sysadmin
Spring 2025 Lab 7
public cloud with Azure and code repository with GitLab

Things from the prior labs that are required to begin this lab:
e none really, but grading this lab is done from your lab 4 Ubuntu VM
Nothing in this lab is on the critical path for upcoming labs.

co-authoring credits:
e 2020 TA Obada Alagha, who really was a co-author for the first rev of this lab, on AWS
e 2021 student Mikayel Melikyan, for porting the original 2020 AWS lab to Azure
e 2022 TA Jordan Shands-Sparks, who integrated the CA we stood up in the then-new lab 1b
e 2023 TA Dan Houston, who added a GitLab issue to the ending of this lab
e 2024 TA Max Carrillo, who fixed the Git commands towards the end of the lab

This lab is to get you familiar with the concept of public cloud, while introducing you to SSH tunneling,
VPNs, and GitLab to set up a source repository.

In the summer of 2021, both Amazon Web Services and the campus IT administration ghosted us
when we asked for the free educational credits we’d used in this class in 2020. It took Amazon a full
year to finally explain why: they had eliminated the educational program that used to give students
free credits. As such, we fired Amazon and AWS, and replaced them with Microsoft and its Azure
public cloud service. With Azure, you can get $100 of free credits, with very few questions asked,
simply for having an e-mail address that ends with .edu ... and none of the pain of waiting for worth-
less bureaucrats to lift a finger.

The modern public cloud really started with Amazon, and with AWS, which began as an internal inter-
face for Amazon to manage its vast internet commerce site behind the scenes. In order to become
the proverbial “everything store” it's become today, web services had to become separated from data
warehouses of product information behind them. Those data warehouses, in turn, had to be sepa-
rated from the payment systems. All of these services, for all of those shopping customers, had to be-
come fault-tolerant, expendable, cloneable, and scalable in a distributed fleet across multiple fault-
tolerant geographical zones. In fact, the first public brand name for what is now known as “AWS” was
“EC2,” short for “elastic computing cloud,” to emphasize the scalability services behind it. When one
subset of services needed more computing power, memory, storage ... they made an API for it.

Rapidly, with the knowledge you’ve developed if you didn’t have it already, you can see the budding
beginnings of a first public cloud offering underpinning the various needs of running the largest e-
commerce site on the internet: virtualizing RAM, CPU, disk, and network, everything you need to
stand up a data center. With the advent of public cloud as a service, you no longer need to stand up a
data center or a computer room inside your business.

Most companies don’t buy servers at all any more ... they typically just outsource e-mail to Microsoft
or Google, file sharing to another service if required, and start buying desktop and laptop computers.
If they need servers, they’ll typically engage a public cloud service and start setting up VMs. Many

CS470Lab 7

public cloud customers don’t even need APIs, just a cost-effective replacement for servers, and a web-
based interface for setting up VMs and networks, and collecting payment is all that’s needed.

Again, we’ll be using Microsoft’s Azure. Microsoft, like in a lot of things, was not the first to market,
but didn't want to be left out of the party. In typical Microsoft fashion, Azure is a few years behind its
competition, didn't get it right for the first few versions, and still has lots of catching up to do. Enough
cloud history, though. Let’s do some stuff.

You have limited time and “credits” available on here, while you’re learning ... so please don’t idle on
the website, especially with a VM running. The more you use, the less credits you have left. Once
you’re done grading at the rapidly-approaching end of class, you can use those credits on Azure to
play with whatever you please.

The service we’ll be standing up on our Azure VM is a code repository. The modern standard for ver-
sion control is Git. Gitis both a protocol and the eponymous reference implementation for the soft-
ware, which was originally designed by none other than Linus Torvalds to support the development of
the Linux kernel when nothing else was good enough. Git supports branching, distributed develop-
ment, efficiently handles big codebases with pluggable merging strategies, HTTPS and SSH for code
security in transit, and encryption to protect against tampering and accidental corruption in storage.

Like OpenBSD project founder Theo ReDaadt and yours truly, Linus has been historically known for
strong opinions and a lack of concern for others’ feelings. Here’s Linus famously commenting on the
working relationship the Linux kernel team has with graphics chip vendor Nvidia.

CS470 Lab 7

Linus has acknowledged this behavior, and even taken a hiatus from the kernel project to ponder his
behavior. Here’s how Gizmodo Australia put it in their article’s headline ...

Linux Founder Takes Some Time Off To Learn How To
Stop Being An Arsehole

https://gizmodo.com.au/2018/09/linux-founder-takes-some-time-off-to-learn-how-to-stop-being-an-arsehole/

In British English, a “git” is somebody kind of like Linus ...

git | it

noun British informal, derogatory

an unpleasant or contemptible person: that mean old git | a warped, twisted little git.

... and he’s acknowledged, “I'm an egotistical bastard, and | name all my projects after myself. First
Linux, now git." According to the README .md for git to this day ...

He described the tool as "the stupid content tracker" and the name as (depending on your mood):

e random three-letter combination that is pronounceable, and not actually used by any common
UNIX command. The fact that it is a mispronunciation of "get" may or may not be relevant.

e stupid. contemptible and despicable. simple. Take your pick from the dictionary of slang.

e "global information tracker": you're in a good mood, and it actually works for you. Angels sing,
and a light suddenly fills the room.

e '"goddamn idiotic truckload of sh*t": when it breaks

Don’t take my word for it. See https://github.com/git/git/blob/master/README.md or man git.

Enough back-story; let’s get cracking.

part zero: get free loot
1. First, let's sign up for a free $100 of Microsoft Azure credits. Go to the following URL ...

https://azure.microsoft.com/en-us/free/students/

... and click on the “start free” button. Microsoft will start interrogating you about your eligi-
bility and your status as a student. As such, it's really important to use your @sdsu.edu e-
mail address.

Auditors, you can use your cssc*@edoras.sdsu.edu account as an e-mail address to sign up

https://gizmodo.com.au/2018/09/linux-founder-takes-some-time-off-to-learn-how-to-stop-being-an-arsehole/
https://en.wikipedia.org/wiki/Linux_kernel
https://github.com/git/git/blob/master/README.md
https://azure.microsoft.com/en-us/free/students/

CS470 Lab 7

here ... but before you do, make sure to create a ~/ . forward file on EDORAS with vi and put
a real e-mail address you want your EDORAS account to forward to in that file. You can use
mail on EDORAS to test that the forwarder works.

Back to Azure. Microsoft will ask you for your phone number, to further validate you, both for
multi-factor authentication, and so they have somebody to call before they essentially lease
you a virtual server in their data center. This is primarily intended to deter spammers, who
plagued the early cloud by exploiting trial offers like this one, and using cloud trial credits to fill
all our inboxes with advertisements.

Enter a valid phone number, because they will send a verification code. Yes, Microsoft is evil,
but this free is still free.

Once you have been successfully verified as a student, you will be greeted by this unoffensive
Windows 10-looking screen, and when you click on "Overview" in the left-hand side toolbar,
you should be shown that you have $100 in Azure credits, good for a year.

= . i & pbartoli@sdsu.edu @
A Search resources, services, and docs (G+/) F Q0 & 7?2 & SAN DIEGO STATE UNIVERSITY (.. @0

Home

@ Education | Overview 2 - X

@ Overview

Explore the capabilities of the cloud with Azure.
#% Get started
Easily set up your personal website, unlock the possibilities of Al or securely store your data in the cloud!

Learning resources

& Roles X
@ Click here to complete your student profile

L Software
9 Learning

2 Templates .
Azure credits
My account Student offer: $100

& Profile $100 unused credit expires on August 12, 2022

0 $100

Need help?
& Support To view usage details, visit www.microsoftazuresponsorships.com

Explore Azure roles See all roles

2. This step is optional, but extremely useful to take advantage of while you're still in school and
can get free loot: sign up for the GitHub Student Pack at the following URL ...

https://education.github.com/benefits?type=student

This will also send a link to your school e-mail (.edu) to your existing GitHub account to verify
that you're a student. The GitHub Student Pack also provides another way to get at $100 of Az-
ure credits, so it ties in with this lab.

https://education.github.com/benefits?type=student

CS470 Lab 7

part one: setupa VM

Generally, there’s a point-and-click way to do everything inside Azure, and there’s an API for every-
thing, so you can do it with the command line, or with code, in what we now call “infrastructure as a
service” (1aasS ... remember our thing about as-a-service before?).

We're just going to do it the easy way, via the web interface, because we’ve got a lot to cover.

3. Click on the three lines menu in the upper left-hand corner of the Azure screen and select
“Virtual Machines.” Then click “Create” to create a new VM, then “Azure Virtual Machine.”

virtual machine name: gitlab

region: choose whatever is closest to you, something like US West for most of us
availability options: no infrastructure redundancy required

security type: standard

image: Ubuntu Server 24.04 LTS — x64 Gen 2

VM architecture: x64

size: Standard_D2s_v3 - 2 vcpus, 8 GiB memory (the cheapest option)
authentication type: SSH public key

username: your LDAP username used for previous labs

SSH public key source: Generate new key pair

key pair name: azure_gitlab

public inbound ports: Allow selected ports

select inbound ports: click on the dropdown, check SSH (22) and HTTPS (443)

Now click on “Next : Disks” at the bottom. Don't create the VM yet!

ITIMPORTANT NOTE: your VM is billed hourly, and you must shut down your VM at the end of
this lab to avoid draining your free credits. Don't worry, you won't be billed $70 right away.
You're billed a pro-rated amount for every hour your VM is running.

4. On the “Disks” screen, the default size is fine ... but select “Standard SSD.” We're saving a few
credits here. Leave the rest untouched. Then click on “Next : Networking.”

5. Onthe “Networking” screen, click “Create new” under “Public IP,” then in the pane that comes
in from the right, select a static assignment if it isn’t already. This may cost a couple more
credits, but is well worth it to not have to repeatedly change DNS to be able to aim properly at
it.

Name *

gitlab-ip

SKU* @
() Basic (®) Standard

Assignment ©
(®) Static

Routing preference
(®) Microsoft network () Internet

CS470 Lab 7

Then click on “Next : Management.”

Microsoft Azure has thoughtfully provided us with an option to auto-shutdown VMs to avoid
draining our credits, just in case you forget. This is an important fail-safe mechanism. Turn on
"Enable auto-shutdown," then change the time zone to (UTC-08:00) Pacific Time, or adjust
accordingly to your time zone so that your VM will be awake when you are.

Also note: make sure the shutdown time is far enough from your current time, so your VM
doesn't decide to shut down in the middle of you doing this lab.

Click on “Next : Monitoring” then “Next : Advanced” then “Next : Tags,” and make sure to read
all the options available after each click, but leave everything untouched.

Click on “Next : Review + create,” and pay attention to pricing. This is what | got ...

Price

1 X Standard D2s v3 Subscription credits apply ©

by Microsoft 0.0960 USD/hr

Terms of use | Privacy policy Pricing for other VM sizes

... S0 about a dime per hour. If this lab takes you 2 hours to complete, you'll be billed about 20
cents, provided that you remember to shut it down after you're done. You should have plenty
of credits to play with after class is over.

Check all your settings one more time, and then click on “Create.” Make sure to download
your new private key in the dialog that pops up ... you cannot download it later, and if you
misplace it you will have to re-key your VM via the resource group Ul.

% Generate new key pair

o An SSH key pair contains both a public key and a
private key. Azure doesn't store the private key. After
the SSH key resource is created, you won't be able to
download the private key again. Learn more

Download private key and create resource

‘ Return to create a virtual machine

Azure will tell you the deployment is in progress, and when it's done, it will tell you that your
deployment is complete. Note the relative cleanliness of Microsoft's Azure interface.
Microsoft isn't typically known for aesthetics ... but when and if you try Amazon's AWS, you'll
see what we mean here. The AWS web interface is fugly.

CS470 Lab 7

Home
» CreateVm-canonical.0001-com-ubuntu-server-jammy-2-20240723001417 | Overview
y Deployment
‘,-'«‘ Search ‘ X g i Delete) i Redeploy + Download C) Refresh
/% Overview .
@ Your deployment is complete
5 Inputs
[]‘ Deployment name: CreateVm-canonical.0001-com-ubuntu-s... ~ Start time: 7/23/2024, 12:15:08 AM
Outputs = Subscription: Free Trial Correlation ID: ce55c60d-0add-40e5-bb3e
oo Resource group: gitlab_group_07230005
=] Template

' Deployment details
~ Next steps
Setup auto-shutdown Recommended

Monitor VM health, performance and network dependencies Recommended

Run a script inside the virtual machine Recommended

m Create another VM

You should eventually be told your deployment is complete. Click on “Go to resource,” and in
the resource screen, note your VM's public IP address.

Shutting down and rebooting your VM can be done on the command line, of course, but there’s
another means of doing so here. Just like in lab 6, Azure’s web interface has power controls on each
VM'’s resource page where not only can you stop, start, and restart an instance, you can also
hibernate (pause) it, or use snapshot-like functionality (the capture menu).

= Microsoft Azure (™ Upgrade | © Search resources, services, and docs (G+/) ™ Copilot @ 03

Home
K1 gitlab » %
Virtual machine
‘/3 Search ‘ « & Connect ~ [> Start) start [Stop Hiberr :3: Capture :— Delete C) Refresh
‘ EJ Overview Image
/\ Essentials
[Activity log Restore point
Resource group (move) uperaung system
Aq Access control (IAM) gitlab_group 07230005 Linux

These buttons interact with hypervisor tools inside the guest, so each button here will try to cleanly
perform the corresponding operation if possible first. For instance, the restart and stop buttons will
try to cleanly shut down or reboot the operating system via an agent inside the VM, and if that fails or
times out, then they will try a hard shutdown or a hard reset.

CS470 Lab 7

part two: configuring your instance

9.

10.

11.

12.

First, of course, let's set up DNS for our new system so we can refer to it by name. Add a
lookup to your host computer's hosts file for your Azure VM's IP address, and the hostname
gitlab.cs470.internal.

If you're using Windows and WSL, you'll need to restart your WSL instance to have it
regenerate your hosts file in WSL. Close all WSL windows, and then run the following
command in a command prompt or PowerShell window:

wsl.exe --shutdown

In the name server from lab one, on OpenBSD, create a forward lookup to gitlab.cs470.internal
for your Azure VM's IP address, and make sure to increment the serial number of your
cs470.internal zone file before restarting your name server. Make sure the lookup works.

Go to wherever you saved your SSH key file (likely your Downloads folder). It will have a . pem
extension.

In case you haven't noticed already, or missed it in the new lab zero, WSL mounts your Win-
dows operating system drive on /mnt/c ... so if you’re on Windows, cd /mnt/c using Ubuntu
in WSL. Now you can view (and modify) your Windows directories and files through the Ub-
untu shell ... cool, huh? For me, when in Windows and WSL, | use the command ...

cd /mnt/c/Users/peter/Downloads

... to get to my downloads folder. Of course, you’ll insert whatever your username is in place
of mine to get there on your system.

Those of you using Macs or Linux, will have a folder called bownloads in your home directory,
and remember, the tilde character (~) is a shortcut for the path to your home directory, and
your .ssh folderis at ~/ . ssh.

Whichever operating system you’re on, once you’re there, move the key file (the one ending
in .pem) into your . ssh directory, and give it the name ~/ . ssh/id_azure ...

cd into your ~/.ssh directory and change the permissions of your key file to be read-only for
the owner only, with no permissions for anyone else. This is important for SSH to not loudly
complain at you about how you store your key material. You’ll be using chmod to do this, of
course ... and you need to figure out the octal permissions “number” or proper switches to
use, but you should either have the skills to figure this out by now, or you’re leeching off your
friends, and should knock it off.

Test logging into your new instance ...

$ ssh -1 ~/.ssh/id_azure peter@gitlab.cs470.internal

CS470 Lab 7

You should be prompted to add the SSH host key fingerprint to your known_hosts file like the
first time you SSH into any system, and once you agree, you should be passwordlessly logged
in.

13. Note that you logged in using only an SSH key. Also note, this SSH key had no password to
protect it. So, if that keyfile got out ... so would access to your instance. Let’s fix that.

$ ssh-keygen -p

ssh-keygen will ask you to choose a password. If you haven’t made sure that your permis-
sions are appropriate for crypto key material, ssh-keygen is going to politely pitch a fit.

14. Copy over your other SSH public key, the one you generated way back in lab zero, into the
authorized_keys keyring file on our Azure VM.

$ ssh-copy-id -f -i ~/.ssh/id_rsa -o ’‘IdentityFile ~/.ssh/id_azure’
peter@gitlab.cs470.internal

You can ignore most of the output. If you did everything correctly, you should now be able to
log into your Azure instance just like the rest of your other VMs, without having to invoke the
SSH key that came along with the instance.

15. As in step #13 from lab 4, let’s take a couple minutes to install packages used later by your in-
structor for grading purposes: csh (via tcsh), GNU binutils, net-tools, and gcc.

$ sudo apt update
$ sudo apt install tcsh binutils net-tools gcc

part three: SSH port forwarding

As well as having a VM, you have a Virtual Private Cloud (VPC), a private NAT'd network in the cloud
just like your VMware NATwork that hosts all your VMs on your lab machine.

$ ssh gitlab.cs470.internal ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default
glen 1000
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc mg state UP group default
glen 1000
inet 10.1.0.4/24 metric 100 brd 10.1.0.255 scope global ethO
valid_1ft forever preferred_lft forever

You can see the familiar loopback network above, along with the 10.1.0.0/24 network Azure has set
up to NAT to. This is the VPC network. You’re able to do anything with that network, including run-
ning hosts that aren’t publicly visible. No traffic gets into the VPC network from the outside unless
you explicitly take steps to allow things in ... it’s yours, hence the “private” in “virtual private cloud”
(VPC).

CS470 Lab 7

Bringing this back to GitLab, e-mail connectivity is almost mandatory while setting up and using
GitLab. There are ways around it, but new user invitations are sent over e-mail, and if we were to get
extensively into heavy GitLab usage ... virtually all notifications are best done via e-mail. Since we
aren’t using a public domain (we’re using cs470.internal) for our lab e-mail, we really need GitLab in
our private network, and the way we’d typically do that would be with a VPN.

A persistent site-to-site VPN tunnel is precisely what we often use to connect various parts of a larger
private network, across physically disparate locations, like our business headquarters, to its satellite
offices, and to a data center presence, whether it be hosted physical systems or a cloud service like
AWS or Azure. This would allow our systems, including any at Azure, to talk to each other across the
private network, behind the firewalls, just like our VMs inside VMware Fusion or Workstation are able
to speak to one another directly, but using an encrypted virtual wire (the VPN) where those communi-
cations need to transit public networks.

In this part of the lab, | really wanted you to set up a point-to-point VPN between Azure and that
VMware NATwork, but there are too many obstacles ... most notably that our lab machines are often
our laptops, or on consumer internet connections, so there’s not a fixed IP address at that side of the
connect. So, | had to figure out a way around that ... and that way is to use SSH port forwarding again.

Enough story time, however ...

16. We need to get our Azure instance’s e-mail traffic back to our FreeBSD VM ... so we want to
use the remote forwarding capability to send traffic back from the remote system, over the
SSH connection back from server to client, to a port on our local private cloud.

In order to do this manually, we’d use this command on our local host operating system ...

$ ssh -R 2525:10.42.77.72:25 gitlab.cs470.internal

... this means you’re forwarding port 2525 from the remote system to TCP port 25 (SMTP) on
the IP address 10.42.77.72 (my FreeBSD VM) from your SSH client. However, this is painful, so
let’s use and abuse the SSH config file instead of doing this manually. Add the following block
of configuration to ~/ . ssh/config on your host system ...

Host gitlab.cs470.internal
RemoteForward 2525 10.42.77.72:25

... and log out and log back into your Azure instance. In order to test this port forwarder, we’ll
need the netcat utility on our Azure instance (often called nc), so first install it ...

$ sudo apt -y install netcat-openbsd

... and then use it, on the remote Azure instance, to cause a connection to open to TCP port
2525 on the loopback adapter of your Azure instance. If you did everything correctly, you
should see an SMTP service banner for your FreeBSD VM’s mail server ...

$ nc localhost 2525

10

CS470 Lab 7

17.

18.

220 freebsd.cs470.internal ESMTP Sendmail 8.18.1/8.18.1; Tue, 23 Jul 2024
20:43:29 -0700 (PDT)

... because TCP port 2525 on the loopback adapter of your Azure instance is now a tunnel back
to your FreeBSD mail server’s SMTP port.

I'IMPORTANT NOTE: you need to keep the SSH connection open in order for the mail channel
to remain open back to your FreeBSD VM. If you are not logged into your Azure instance via
SSH with the port forward set up correctly, mail will not flow back to your mail server.

Just like we did for the SMTP service on our other Ubuntu instance in lab 4, let’s again install
postfix.

$ sudo apt install postfix

Set it up as “internet with smarthost” and specify gitlab.cs470.internal as the system mail
name. The instance may have a DNS name in the domain cloudapp.net pre-populated, but
that DNS name won’t resolve outside your Azure VPC network, and won’t allow us to get e-
mail back to our mail server.

When you’re asked for an SMTP relay host, supply [127.0.0.1]:2525 ... aiming it at the SSH
tunnel we set up in the prior step.

Edit /etc/aliases and add the following line to forward root’s mail ...

root: peter@cs470.internal

... and of course, replace my username with yours, and run newaliases to tell the mail subsys-
tem to re-process the aliases database.

$ sudo newaliases

Now, let’s configure our Azure instance to send e-mail via our SSH port forwarder; we’ve
already discussed the use of an SMTP “smart host.” Let’s set up postfix appropriately ...

$ sudo vi /etc/postfix/main.cf
... let’s open up the postfix configuration file. Add, set, or confirm the following variables ...

myhostname = gitlab.cs470.internal
mydomain = cs470.internal

myorigin = gitlab.cs470.internal
inet_protocols = ipv4

relayhost = [127.0.0.1]:2525

... hote these options are scattered throughout main.cf and you’ll need to find them. You
don’t really need to put each option where they occur in the file, but it’s recommended, and
it’s really important you get the syntax correct, especially for the relayhost option.

11

CS470 Lab 7

19. Now, let’s reload postfix to force it to read the new configuration settings.

$ sudo postfix reload

Note port 2525 above is the SSH port forwarder that we just checked with nc. Now, let’s test
sending an e-mail over that channel. Install mailx like with our other Ubuntu VM ...

$ sudo apt -y install bsd-mailx

... and then use it to send a test mail ...

$ echo “"test” | mail -s test peter@cs470.internal

Now check your mail client. If you got it right, you’ve got mail!

part four: GitLab

We're going to install GitLab on the Azure VM to serve as our own git repository manager. GitLab, like
GitHub, is an “on premises” server product you can use to host your repository on your own systems
and a public hosting site for projects. We're using GitLab, though, not GitHub ... which not coinci-
dentally is owned by Microsoft, who uses it to spy on our coding and sell us the results.

https://copilot.github.com/

When first we wrote up this lab using Azure back in 2021, Microsoft was just beginning to use the
“Copilot” branding for Al-based features in GitHub and Visual Studio. Now, it’s pervasive, throughout
their web browser (Edge), their operating system, and their entire line of products.

If you’ve ever used git or Github, you’ve likely only worked with individual repositories. GitLab is a
comprehensive repository management system that will manage multiple repositories ... and docu-
menting its use is outside the scope of this exercise, but you are encouraged to look into it for sure, as
we chose our examples here to be utilitarian to your future endeavors.

https://docs.gitlab.com/

GitLab, as part of its own freemium model, comes both in an Enterprise Edition (“EE”) with lots of fea-
tures for business and professional support, and a Community Edition (“CE”) that comes free of
charge, and with only community support. We are, of course, going to use the free CE.

20. Going to GitLab’s package website for GitLab CE, | searched for the most recently version of a
64-bit Intel (x86_64) package for Noble Numbat, the code name for Ubuntu 24.04 (ubuntu/no-
ble). This ended me up at this page.

Following the directions on that page, | added the GitLab CE repository by running the com-
mand in blue, in the upper right hand corner.

12

mailto:peter@cs470.local
https://copilot.github.com/
https://docs.gitlab.com/
https://packages.gitlab.com/gitlab/gitlab-ce/
https://packages.gitlab.com/gitlab/gitlab-ce/packages/ubuntu/jammy/gitlab-ce_17.2.0-ce.0_arm64.deb

CS470 Lab 7

21.

22.

$ curl -s https://packages.gitlab.com/install/repositories/gitlab/gitlab-
ce/script.deb.sh | sudo bash

When it’s finished, it should say ...

The repository is setup! You can now install packages.
At long last, let’s install GitLab ...

$ sudo apt install gitlab-ce

apt should do a familiar dance ...

Setting up gitlab-ce (17. .0-ce.0)
It looks like GitLab has not been conflgured yet; skipping the upgrade
script.

* | *
%k %k %k * %k %
%k 3k 3k %k %k * %k %k % %
L kockokokokok * %k %k >k >k %k ok
3k 3k 3k %k %k %k Xk Xk %k %k >k >k >k 3k %k %k
S s e, SRRk RRX
s e s, Rk
B R oR ol Rk
S e SRR
S, REERX
L, kEkx
I*In
/() /- _//_
Ay A /
////////_///////
_ /N N

Thank you for installing GitLab!

GitLab was unable to detect a valid hostname for your instance.

Please configure a URL for your GitLab instance by setting “external_url’

configuration in /etc/gitlab/gitlab.rb file.

Then, you can start your GitLab instance by running the following command:
sudo gitlab-ctl reconfigure

For a comprehensive list of configuration options please see the Omnibus
GitLab readme
https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/README .md

Like GitLab recommends, edit /etc/gitlab/gitlab.rb, change external_url to
http://gitlab.cs470.internal, and then reconfigure GitLab. This should take about 5
minutes.

At the end of that long process, you should see the following important blurb to aim you at
where to find the default login credentials ...

Notes:

Default admin account has been configured with following details:
Username: root

Password: You didn’t opt-in to print initial root password to STDOUT.

13

CS470 Lab 7

23.

24.

25.

26.

Password stored to /etc/gitlab/initial_root_password. This file will be
cleaned up in first reconfigure run after 24 hours.

NOTE: Because these credentials might be present in your log files in plain
text, it is highly recommended to reset the password following
https://docs.gitlab.com/ee/security/reset_user_password.html#reset-your-root-
password.

gitlab Reconfigured!
... and GitLab should be running. How can you tell?
If it’s not running, look under /var/log/gitlab ...

Next, we need to access the GitLab launch webpage. If we’re on our private software-defined
network inside VMware on each of our computers, we’re a whole lot less concerned about en-
crypting connections with important data, like passwords ... so at every other juncture thus
far, we’ve took shortcuts and cut corners. This time, however, we’re going over the internet,
and we’re going to do this The Right Way™.

We could use SSH port forwarding to provide encryption here, but then we’d want to access
HTTP content under URLs at gitlab.cs470.internal ... both on its public IP, and via a loopback
adapter with the SSH port forward ... but that would be two different IP addresses for different
services on the same hostname, and this not a workable configuration.

The Right Way™, of course, is to use HTTPS, instead of HTTP ... in order to do this, we’ll need
an SSL/TLS certificate again, this time for the hostname gitlab.cs470.internal. In a real-world
scenario, we’d have real, publicly-usable domain name and would get a certificate from a
third-party certificate provider, such as Let’s Encrypt. | briefly thought about using certbot to
get a certificate for both gitlab.cs470.internal AND a public hostname registered using
FreeDNS (see lab 5b), but let’s use our own CA here.

Edit /etc/gitlab/gitlab.rb again (sorry), and change external_url to have https instead
of http in the protocol portion of the URL.

Copy your Azure SSH key over to your failsafe user’s key ring on your OpenBSD VM.

$ scp -p ~/.ssh/id_azure failsafe@openbsd:~/.ssh/id_azure

Just like we did in labs before, move your Azure VM’s default OpenSSL configuration file out of
the way ...

$ sudo mv /etc/ssl/openssl.cnf /etc/ssl/openssl.cnf.orig

... then copy the openss1.cnf file from your OpenBSD VM up to your Azure VM, move it to
/etc/ssl, chown it to root : root, and change the hostname at the end to
gitlab.cs470.internal.

14

CS470 Lab 7

27.

28.

29.

30.

31.

32.

33.

34.

Next, make a directory for certificates for GitLab.

$ sudo mkdir -m 700 /etc/gitlab/ssl
Now, let’s make an RSA key for our certificate...
$ sudo openssl genrsa -out /etc/gitlab/ssl/gitlab.cs470.internal.key 4096

Now, let’s generate a certificate request (often called a “CSR”), with the above key.

$ sudo openssl reqg -new -key /etc/gitlab/ssl/gitlab.cs470.internal.key -out
/etc/gitlab/ssl/gitlab.cs470.internal.csr

Again, you should recognize the next steps here. No locality name. Same organization name.
For the common name, gitlab.cs470.internal. Use your SDSUid e-mail as your e-mail ad-
dress.

Log into your OpenBSD VM as failsafe to copy the CA certificate up to your Azure VM.
$ scp -p -1 ~/.ssh/id_azure /home/pki/data/cacert.pem peter@gitlab:~
Now go to a root shell on your Azure VM to add the certificate to the list of trusted CAs.

cat cacert.pem >> /opt/gitlab/embedded/ssl/certs/cacert.pem

Copy gitlab.cs470.internal.csr out of GitLab’s privileged configuration folders, so we can
copy it to OpenBSD.

$ sudo cp /etc/gitlab/ssl/gitlab.cs470.internal.csr /tmp/gitlab.cs470.internal.csr
Grab gitlab.cs470.internal.csr from OpenBSD. This is all one line ...

$ scp -1 ~/.ssh/id_azure peter@gitlab:/tmp/gitlab.cs470.internal.csr
/home/pki/newreq.pem

... then have your CA sign it.

$ cd /home/pki && CA.pl -sign

Copy the signed certificate back over to GitLab. Again, single line command.

$ scp -i ~/.ssh/id_azure newcert.pem peter@gitlab:/tmp/gitlab.cs470.internal.crt
Back on GitLab, move it to the right location ...

$ sudo mv /tmp/gitlab.cs470.internal.crt \
/etc/gitlab/ssl/gitlab.cs470.internal.crt

... fix its ownership.

$ sudo chown root:root /etc/gitlab/ssl/gitlab.cs470.internal.crt
15

CS470 Lab 7

35.

36.

37.

You should see something like this in your certificate directory when you’re done ...

$ sudo 1s -1 /etc/gitlab/ssl/

total 16

-rw-r--r-- 1 root root 7549 Jul 24 05:30 gitlab.cs470.internal.crt
-rw-r--r-- 1 root root 1907 Jul 24 05:27 gitlab.cs470.internal.csr
STW- - 1 root root 3272 Jul 24 05:26 gitlab.cs470.internal.key

Now let’s tell GitLab to reconfigure itself for HTTPS and reload its settings.

$ sudo gitlab-ctl reconfigure

If you got it right, you should see a listener active on port 443 with netstat ...

$ netstat -an | grep 443
tcp 0 0 0.0.0.0:443 0.0.0.0:%* LISTEN

... if you didn’t get it right, look in /var/log/gitlab for error messages.

For me during testing, | had to use gitlab-ctl to stop and start the services to get port 443
to come up instead of 80.

Now, open up a web browser, and go to https://gitlab.cs470.internal ... you should not get a
certificate or security warning; you should have a login splash for GitLab, asking you to change
your password. If you get a 502 error, don’t worry, this is common with GitLab ... it sometimes
takes a few minutes to get properly spun up. As you could see during the initial installation,
it’s a pretty big pile of software. Go get a snack or a drink, come back, and reload the
tab/page in your browser.

This is the password for the root GitLab account, so set one up, and then sign in as root using
that password you just made. If you aren’t asked to change your root password on your first
visit to GitLab’s web interface, log into it with the password in the file at the path
/etc/gitlab/initial_root_password. If that file was wiped, you can reset the root GitLab
account’s password from the command line as follows ...

$ sudo gitlab-rake ”"gitlab:password:reset[root]”
Then, go to the admin area and change the root password. Once you’ve done that, log out.

Then, register a new, regular non-root user using the web interface with your LDAP username
and your LDAP user’s @cs470.internal e-mail address. Log back into the root account, go to
the Admin portal at the bottom left of GitLab’s interface, and click “view latest users” under
“Instance Overview.”

16

https://gitlab.cs470.internal/

CS470 Lab 7

38.

39.

[D + % acmnes / vsers
1] 3!] i o
£\ Check your sign-up restrictions X
Q Search or go to... Your GitLab instance allows anyone to register for an account, which is a security risk on public-facing GitLab instances. You should

deactivate new sign ups if public users aren't expected to register for an account.

Admin area N
Deactivate Acknowledge

82 Overview v
Dashboard /\ OpenSSL version 3 x
Projects Starting with GitLab 17.7, OpenSSL 3 will be used. All TLS connections require TLS 1.2 or higher. Weaker ciphers are no longer supported.

Encryption must have at least of 112 bits of security. Learn more.

Users
Groups
Users (=]

Topics

Gitaly servers

& ci/co > Users Cohorts
I Analytics >
[Z Monitoring > Pending approval Without two-factor authentication Administrators
« Messages 1 2 1
Filter list Filter list Filter list
s System hooks
83 Applications Search by name, email, or username Q| | Lastcreated v
@ Abuse reports 0 Approve
Name Projects Groups Created on
£ Deploy keys Reject
Q@ Labels ,Vr,’,t: Max C Pending approval 0 0 Nov 16, 2024 Never Edit
s max@cs470.internal
@ Settings >
Administrator Admin It's you! 0 0 Nov 14, 2024 Nov 16, 2024 Edit
%" gitlab_admin_ff4888@example.com
@ Help £ Admin

You should receive an e-mail from GitLab once you’ve completed your user registration, or
you’ve done something wrong.

IMPORTANT: If the webpage is saying it’s taking too long to respond, just refresh it.
Congrats, GitLab is now set up.

Go to the “Preferences” screen again after you log back in, and select "SSH Keys" from the
menu on the left. Use the following command ...

$ cat ~/.ssh/id_rsa.pub
... to show your SSH public key, and then copy and paste it into the text entry box under “key.”

In your browser, click the plus button in the top left of GitLab’s interface, then click “New pro-
ject/repository” in the dropdown menu. Choose to create a blank project.

Name it hello-world and select the option to initialize the repository with a README . md file.

17

CS470 Lab 7

Create blank project

Create a blank project to store your files, plan your work, and collaborate on code, among other things

Project name

Hello World
Must start with a lowercase or uppercase letter, digit, emoji, or underscore. Can also contain dots, pluses, dashes, or spaces.
Project URL Project slug
https://gitlab.cs470.internal/max/ / hello-world

Visibility Level @

O & private

Project access must be granted explicitly to each user. If this project is part of a group, access is granted to members of the group.
2 @ Internal

The project can be accessed by any logged in user except external users

@ Public

The project can be accessed without any authentication.

Project Configuration
Initialize repository with a README

Allows you to immediately clone this project’s repository. Skip this if you plan to push up an existing repository.

| Enable Static Application Security Testing (SAST)
Analyze your source code for known security vulnerabilities. Learn more.

Create project Cancel

40. Once you've created the repository, click the blue "code" button and copy the text under

41.

“clone with SSH.” Then, on the command line (from within any machine you like now, except
maybe your AIX instance), you should be able to use that data with git to clone the repository
you just created over SSH ...

$ git clone git@gitlab.cs470.internal:peter/hello-world.git
remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused O
Receiving objects: 100% (3/3), done.

cd into the hello-world folder and create a hello_world. c file to do everybody's first pro-
gramming project. The output of your program should be precisely this ...

Hello World!

... with a newline at the end. Once you have it working, add the source code file to the reposi-
tory’s staged changes.

$ git add hello_world.c

Then let's set up our local git client to tag up our first commit properly. Use your LDAP user’s
email for user.email, and use your GitLab first and last name for user.name ...

$ git config --global user.email “peter@cs470.internal”
$ git config --global user.name “Peter Bartoli”

These details should match the initial commit created by GitLab. You can see them using Git:
$ git log
commit bcbf27e6b12ee2a60cbebeb65fe125f564faacabb

Author: Peter Bartoli <peter@cs470.internal>
Date: Sun Nov 17 02:22:45 2024 +0000

18

mailto:peter@cs470.internal

CS470 Lab 7

Initial commit

Then, commit your staged changes with the message “my first commit” and push them to the
remote repository on GitLab:

$ git commit -m “"my first commit”
$ git push

Open up the browser again and go to the repo again ... voila! It’s there!

42. Test downloading and building your repository contents from your lab 4 Ubuntu VM; this is
where it will be graded from. Use the git client with SSH key-based authentication.

43. Now that you have a repository set up in GitLab, let's explore how to use the issue tracking
feature to keep track of tasks, bugs, or feature requests. In your GitLab repository, click on "Is-
sues" in the left sidebar or on the top navbar.

44. To create a new issue, click “issues” and then “new issue.” If you’'re not already on your pro-
ject’s page, you’ll have to select our first and only project.

45. Provide a descriptive title for your issue, such as “fixing capitalization in hello_world.c” ...in
the description box, provide more details about the issue. This is especially important in larger
projects, where we’d typically describe the steps to reproduce the issue, what the expected
behavior is versus the actual behavior, etc.

46. To organize your issues, you can assign labels to them. Click “Edit” on the “Labels” menu and
create a new label, like “bug” or “enhancement.” Labels can help you filter and sort issues
more effectively.

47. You can set a due date for the issue by clicking on the “Due Date” calendar icon and selecting a
date. This can help you keep track of deadlines and prioritize tasks.

48. Once you have filled in the necessary information, click on the “Submit issue” button at the
bottom of the page.

Max C | hello_world / Issues / #1
Fix capitalization of program Edit
QO open [Issue created 6 minutes ago by Max C

The output of the program is "Hello World!" when it should be "Hello world!"

0 0 ® Create merge request v

&, Drag your designs here or click to upload.

Take note of the number at the top left of the screen. In GitLab, every issue and merge re-
quest has a unique number that allows us to easily refer to that specific issue/merge request
without typing its full name. Since | haven’t created any issues or merge requests prior to this

19

CS470 Lab 7

49.

50.

51.

52.

step, the issue’s number should be #1.

Now that the issue has been created, you can view and manage it from the “Issues” tab. You
can filter issues by their status (open or closed), assignee, label, or due date using the options
at the top of the page.

[0 MaxC / hello_world / Issues

Open 1 Closed 0 All 1 Bulk edit m

i\)VI Search or filter results O\‘ Created date v ‘l?

(¥ Fix capitalization of program
#1 - created 10 minutes ago by Max C B Nov 12, 2024 updated 6 minutes ago

Show 20 items v

You can also link your issues to specific merge requests (also known as pull requests) by refer-
encing the issue number in the merge request title or description with a #. This creates a con-
nection between the issue and the code changes, making it easier to track the progress of a
task or bug fix.

You can also link your issues to specific merge requests by referencing the issue number in the
merge request title or description. This creates a connection between the issue and the code
changes, making it easier to track the progress of a task or bug fix.

Get to fixing that issue, modifying your “hello world” program’s output to have only a single
capital letter, at the very beginning of the output sentence. Once you’ve fixed the bug and
added hello_world.c to your repo’s staged changes, you can reference the issue using its is-
sue number in your commit message ...

$ git add hello_world.c

$ git commit --message “Fixed capitalization. Closes #1”
$ git push

... and GitLab will recognize the phrase “Closes #” in the commit message and automatically
close the issue for you.

[MaxC / hello_world / Issues

Open 0 Closed 1 All 1 Bulk edit m

"@"‘ Search or filter results Q‘ Created date v ’l?

20

CS470 Lab 7

part five: patching and conclusion

Repeat the patching cron job setup and manually patch this system, as you did with your lab 4 VM, in
parts two and eight of that lab. Since your lab 7 VM is also Ubuntu, the configuration is the same.

In future iterations of this lab, we’ll hope to explore more public cloud stuff, like setting up our VM
the less-easy way, via code, and exploring the ridiculous number of things you can do with Azure and
AWS.

If you stay logged into your lab 7 VM with SSH port forwarding, you’ll receive all the patching advisory
mails in your mail server’s inbox. There are some pretty compelling reasons not to do long periods of
time, as well, or to do so sparingly.

In a public cloud, a VM instance is typically billed according to compute usage (CPU/RAM) and storage
time. If your VM is powered down while you’re not using it, you’re only charged for storage, and your
Azure credits will last longer. You can power down your Azure Ubuntu instance the same way you
powered down your lab 4 VM, or you can power it down via the Azure web interface.

</lab7>

21

