CS 470: Unix/Linux Sysadmin
Spring 2025 Lab 6
backup and restore, P2V conversion, and private cloud with Proxmox

Things from the prior labs that are required to begin this lab:
e getting your lab 2 VM up and online
e getting NFS runningin lab 3
e grading this lab is done from your lab 2 FreeBSD VM
Nothing in this lab is on the critical path for upcoming labs.

Those of us with Intel CPUs have been using VMware’s desktop hypervisor extensively thus far in the class; at
this point in the labs, you’ve arguably set up a little data center in a private cloud. What if you wanted to use
data center grade products, rather than desktop products? What if you wanted to take a physical machine
and turn it into a virtual machine? We’re going to answer all these questions in lab six, while we also pick up
and utilize valuable skills performing backups and manually partitioning disks so we understand how to put
the pieces of a machine back together in the event of a serious problem, or the need to convert a machine
from a physical machine into a virtual instance.

First, we are going to install Proxmox to pilot a private cloud hypervisor. Then we are going to back up our
FreeBSD VM to the file server on our Rocky VM, and restore a replica using our NFS and web servers.

We used to use VMware’s ESXi hypervisor here, but VMware no longer offers that hypervisor for free for
hobbyists, nor does it offer the academic licensing program that used to give us VMware’s full suite of data
center products for free for academic use.

Subject: ACTION REQUIRED: End of Life for VMware IT Academy & Software Licensing Programs
From: VMware IT Academy - No Reply <email@itacademy.brightspace.com>

Date: 8/8/24, 2:38 PM

To: pbartoli@sdsu.edu

Hello Peter,

We regret to inform you that Broadcom has unilaterally made the decision to initiate the end-
of-life process for the VMware IT Academy and Academic Software Licensing programs
effective August 15, 2024. As a result, customers will no longer be able to purchase new
subscriptions in the VMware IT Academy store after 5:00pm E.T. on August 15, 2024. We
understand that the IT Academy has been a reliable resource for many years, and we are
disappointed to be delivering this message.

Proxmox is the next best thing, so that’s what we’re going to use. It’s free and open source, but a commercial
version of the product is available if you want advanced features or want support for it in a business
environment.

When extending support in this class to ARM Macs, this lab was one of my greatest concerns. | was really
trying to avoid a situation where users of one platform had entirely different directions than the other, but it
couldn’t be avoided in this lab. For a portion of this lab, there will be a set of directions for each platform.

CS470Lab 6

Those of you on Intel-based systems can actually do nested virtualization and will replicate your FreeBSD
VMs as a nested virtual machine inside your Proxmox VM. Those of you using ARM Macs will only be able
to test drive Proxmox in a VM for a bit, then will have to create another VM to make a replica of your
FreeBSD instance on the side.

Because of the need to do nested virtualization here in this lab, if you’re going to have system configuration
issues, or conflicts with other software on your computer, this is when it’s going to happen, if it hasn’t already.

CPU hypervisor resource conflicts on Windows:

VT-x and other virtualization extensions in the CPU must be enabled for Intel CPU users, similar ones also
enabled for AMD CPU users, and Hyper-V must be disabled for Windows users. If you failed to set the default
WSL version to 1 in lab zero, you're likely to catch a problem here. You might also need to turn off the Virtual
Machine Platform and Windows Hypervisor Platform features in the Windows Features dialog, and if you’re on
an AMD CPU, you’ll have to turn off memory integrity features.

The links below and the proposed solutions in them helped a lot of people get their setups working.

disabling Hyper-V on Windows:
https://stackoverflow.com/questions/30496116/how-to-disable-hyper-v-in-command-line

disabling memory integrity on an AMD CPU:
Open Windows Security from the Start Menu, select “Device Security” in the menu on the left, then click on
“core isolation details.” Turn off “Memory Integrity.”

enabling nested virtualization in a VM:
https://www.itechtics.com/nested-virtualization
https://bhanuwriter.com/virtualized-amd-v-rvi-is-disabled/

virtual network interface permissions and promiscuous mode on Linux:

In order to pretend to be other computers with other ethernet MAC addresses, to facilitate the software-
defined networking capabilities in its hypervisors, VMware needs full control to read and re-write traffic on all
network devices, which of course we do with file permissions. People running lab six on VMware Fusion on
Intel Macs will get a login prompt to login as an admin when firing up an Proxmox VM.

https://stackoverflow.com/questions/30496116/how-to-disable-hyper-v-in-command-line
https://bhanuwriter.com/virtualized-amd-v-rvi-is-disabled/

CS470Lab 6

%

vmware-vmx

A virtual machine is attempting to
monitor all network traffic, which
requires administrator access.

Enter your password to allow this.

peter

Native Linux users must find out how to allow promiscuous mode through to their VMs; see this VMware
knowledge base article for more information. The best solution for this annoyance is to modify the VMware
service startup scripts on your host operating system. | recommend adding the following two lines to the end
of the function vmwareStartvmnet () in /etc/init.d/vmware so that administrators of your Linux host
(notably you) can start up VMs with full read/write access to the hypervisor’s virtual network interfaces.

chgrp sudo /dev/vmnet*
chmod g+rw /dev/vmnet*

In all things, as always, if you get an error message, web search it first and ask questions second. Usually
there’s a quick answer.

part zero: get it

Go to proxmox.com and hit “downloads” in the main toolbar. Under latest releases, to the right of “Proxmox
VE 8.4 I1SO Installer,” click Download. As the page says, proxmox-ve_8.4-1.iso is approximately 1.6 GB.

part one: install it
As always, create a custom VM.

e guest OS:
o Intel/VMware: Debian 12.x 64-bit
o ARM/UTM: emulate, other
o CPU:
o Intel/VMware: two virtual cores or processors
one processor, two cores if you’re on VMware Workstation
o ARM/UTM:
= architecture: x86_64

https://knowledge.broadcom.com/external/article?legacyId=287
https://knowledge.broadcom.com/external/article?legacyId=287
https://proxmox.com/

CS470Lab 6

= system: Standard PC (Q35)
= CPU: Nehalem-v2
= two virtual cores

boot firmware: UEFI

RAM: 4096 MB / 4 GB

hard disk: 20 GB

Whether you’re using VMware or UTM, you'll probably need to customize settings right away.

Those of you with Intel CPUs will need to enable nested virtualization.

In VMware Fusion on Intel Macs, go to your VM'’s settings, then the processors/memory pane, click on
the triangle next to “advanced options,” then click on the button to enable hypervisor applications in
the virtual machine if it’s not already turned on.

In VMware Workstation on Windows or Linux, go to your VM'’s settings, select the hardware tab, then
choose “processors” in the device list, and click on the box next to “Virtualize Intel VT-x/EPT or AMD-
V/RVI” if it’s not already turned on.

For those using ARM Macs, nested virtualization isn’t going to work with emulation, but the following settings
will help you at least run Proxmox in emulation:

under QEMU and “tweaks”

o enable UEFI boot, the RNG, and balloon devices if not already

o make sure “use local time for base clock” is turned off

under display, change the emulated display card to “virtio-vga” if not already that

under network, change your emulated NIC to an e1000 if not already and use “Shared Network”

You may want to watch your RAM consumption in Activity Monitor.app on macOS, in the Task
Manager on Windows, or using top on Linux. If you’re running low on RAM, and swapping a lot, you
can shut down your Openindiana VM during part one, starting now. Remember to tell them each to
shut down on the command line first, not to just tell your hypervisor to shut down the VMs.

On booting your VM to do the installation, you’ll be greeted by this menu. Choose the terminal Ul ...
we don’t need no stinkin” mice here anymore. Before you end up in the installer, you’ll see it sense its
devices and its network, and grab an IP address from the network, similar to other OSs you’re seen
recently. Proxmox is Linux, Debian Linux to be precise.

CS470Lab 6

B proxmox.cs470.internal To release your mouse press: Control-3¢

Proxmox VE 8.2 (iso release 2) - https://www.proxmox.com/

X PROXMOX

Welcome to Proxmox Virtual Environment

Install Proxmox VE (Graphical)
Install Proxmox VE (Terminal UI)

Advanced Options

enter: select, arrow keys: navigate, e: edit entry, esc: back

On the first screen, agree to the end user license agreement ... consult an attorney, if needed.

At the disks screen, choose your VM’s only virtual hard drive.

B proxmox.cs470.internal To release your mouse press: Control-3¢

Y | NN TN N
T <> <
| S AN NS I ([) ANV

1
-

1 Proxmox VE (8.2-2) Installer |
Target harddisk: < /devssda (VMware Virtual 8) (20.00 GiB) >
<Advanced options>

<Abort> <Previous> HIERES

CS470Lab 6

At the localization screen, you should know what to do.

1 Proxmox VE (8.4-1) Installer
Country: United States
Timezone: AmericasLos_Angeles
Keyhoard layout: U.S. English

<Abort> <Previous> ERGIPIS

At the next screen, you’ll be asked to set a root password and an administrator e-mail. Use either
root@cs470.internal or your LDAP user’s e-mail address.

1 Proxmox VE (8.4-1) Installer |

Root password [at least 8 characters]: KACKRRKAAKRARAAARRKAK
Confirm root password:
Administrator email:

<Ahort> <Previous>

At the network configuration screen, use the hostname proxmox.cs470.internal and the IP address
ending in .76.

mailto:root@cs470.internal

CS470Lab 6

N e e o e e

D'/ oS 7 NN\
LT Q> <] Q> <
[T VNN 0 RSV N

1 Proxmox VE (8.4-1) Installer |

Management interface: <
Hostname (FQDN): or
IP address (CIDR):

Gateway address:

DNS server address:

<Abort> <Previous>

Confirm all your settings on the installer synopsis screen. You can leave the checkbox on to
automatically reboot after the installation is over.

part two: configure it

After reboot, you'll see Proxmox go through a very familiar-looking configuration of GRUB on its way into its
standard no-frills login screen, this time, not the installer.

Welcome to the Proxmox Virtual Environment. Please use your web browser to
configure this server - connect to:

https://10.42.77.76:8006/

proxmox login:

While starting up Proxmox, VMware may ask for admin rights to your computer’s network, especially those of
you on Macs. This is because Proxmox is intended to pretend to be many systems with many different IP and
MAC addresses, and is putting its network interface into “promiscuous mode” to allow it to see all packets on
the network interface. It does this out of the box, every time.

Typically, a data center hypervisor is a lean operating system installed on physical hardware, either manually
on the console or by a “jumpstart” network boot and installation in large data center environments where it
will be added to a hypervisor cluster. All configuration is usually done remotely by an operator from their
computer/desk, because data center hypervisors are the epitome of the “set it and forget it” mentality.
Typically, a piece of hardware running a data center hypervisor just becomes more CPU and RAM in the
service of a larger fleet in a “private cloud” environment. Storage provided by any given node can also be
added to the pool, but a common configuration of hypervisor nodes is to use redundant, mirrored (RAID from
lecture) small physical disks to boot the “bare metal” hypervisor, and just the base environment, and then

CS470Lab 6

attach to networked storage, from where VMs are loaded.

3. Asthe login screen invites you to do, aim your host’s web browser at
https://proxmox.cs470.internal:8006/ ... which should now work if you got the hosts file down in the
last step. I’'m using Firefox here, and you might see a certificate warning, like the following ...

B virt & us & vm Run = AN ® osx B we B mis Hel| Input | U Q) un ©) rele

{a Not Secure https://proxmox.cs470.internal:8006 &

Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to proxmox.cs470.internal. If you
visit this site, attackers could try to steal information like your passwords, emails, or credit card
details.

What can you do about it?

The issue is most likely with the website, and there is nothing you can do to resolve it.

If you are on a corporate network or using antivirus software, you can reach out to the support teams for
assistance. You can also notify the website’s administrator about the problem.

Learn more...

Go Back (Recommended) Advanced...

... by clicking the “Advanced” button here in Firefox, | saw what Firefox’s problem was with the
certificate, that it was self-signed (“unknown issuer”), as expected. Unless you have somebody or
something you trust (like the CA on your OpenBSD VM) attesting to the validity of a certificate,
anybody could be claiming to be proxmox.cs470.internal ... or your bank, or doctor, or insurance
company, you get the idea. This is why we need certificates, not merely to enable secure exchange of
authentication credentials, but also to enable a modicum of trust in between web servers and each
other, and between servers and clients.

For now, though, this is on our private network, at the IP address where we juuuuuust set up a
Proxmox instance. Clicking to view the certificate should show that it’s a Proxmox instance ...

Subject Name

Organizational Unit PVE Cluster Node
Organization Proxmox Virtual Environment
Common Name proxmox.cs470.internal

Issuer Name

Common Name Proxmox Virtual Environment
Organizational Unit 00bb111b-542f-4449-b799-79b2143237fd
Organization PVE Cluster Manager CA

https://proxmox.cs470.internal:8006/

CS470Lab 6

... S0 it’s pretty safe to assume we’re not logging into some malicious phishing website. Let’s just click
the button to “Accept the Risk and Continue.” All browsers allow a similar incantation to set trust for
an otherwise-unacceptable certificate on a particular system. Then, at last, we come to Proxmox’s
more-used login interface, via its built-in web server.

Linux PAM standard authentication

English - English

It refers to authentication “realms” ... worth noting that it's really easy to connect Proxmox to a
directory, and we’ll try to do that shortly. “Linux PAM standard authentication” refers to the built-in
user database in the underlying operating system (/etc/passwd and /etc/shadow) ... so log in as root
with the password you set during installation, and find yourself at Proxmox’s web-based administrative
interface.

Proxmox will warn you about not having a valid subscription. This is because Proxmox is free and
open-source software under a “freemium” system, with the base product available for free and
advanced features and support available as a subscription. This is as close as it’s going to get to asking
you for money.

By default, the Proxmox web Ul drops you into the “server view” in the left-hand column. Like in a lot
of type one hypervisors, only networks (denoted by the nine dots icon) and storage (cylinders, like in
spinning hard disks) are visible for configuration.

X PRO XXMNMO X(Virtual Environment 8.2.2

r View Q D

atacenter

&8 Datacenter

- E@ Proxmox Q Search

localnetwork (proxmox)

- & Summary
zD ocal (proxmox)

=[] local-lvm (proxmox) LJ N

Compute capacity (RAM and CPU) is available on demand as offered by each hypervisor. Once we fire

CS470Lab 6

up a VM, you’ll see it appear below the hypervisor that provides its resources.

Let’s get cracking setting up our hypervisor. SSH into your Proxmox instance as the root user, and
notice that Proxmox is built on top of Debian Linux. Please also notice that Proxmox includes its own
custom Linux kernel (“Pmx”).

Linux proxmox 6.8.4-2-pve #1 SMP PREEMPT_DYNAMIC PMX 6.8.4-2 (2024-04-10T17:362Z)
x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue Nov 19 22:31:57 2024

Debian Linux is the upstream parent project of the Ubuntu Linux distribution. Since you’re familiar
with Ubuntu, you’ll find yourself right at home with Debian. It uses a similar directory structure,
similar built-in tools, and the familiar apt package manager.

However, lots of creature comforts are missing ... for instance, we don’t have sudo here.

root@proxmox:~# which sudo
root@proxmox:~#

This is because Proxmox expects us to use the root user for administration, or to set up another
authentication realm like it alluded to in the login dialog.

Go ahead and update your apt cache. You can ignore the warnings about it not loading from the
Proxmox “enterprise” repos; this is because we don’t have a subscription ... we’ll fix that later. The
Debian repos are all that’s important now.

Also, copy your SSH public key into ~root/.ssh/authorized_keys on Proxmox to save some typing.

Time synchronization is of critical importance in private clouds; each VM’s clock is seeded by the host’s
clock. Even though Proxmox is a VM here, to its guests, it’s the host.

As the Proxmox wiki states, chronyd is the default NTP daemon with Proxmox. Go ahead and check
the NTP server’s status. Use systemctl status chronyd to check that it’s properly getting updates
from its configured upstream time server.

Proxmox stores its web server certificate and key data in /etc/pve/nodes/ ... the folder underneath is
named for the hostname of each node, so each of our certificates should be located in
/etc/pve/nodes/proxmox/ ...

1ls -1 /etc/pve/nodes/proxmox

total 2
-YwW-r----- 1 root www-data 83 Nov 19 23:28 lrm_status
drwxr-xr-x 2 root www-data 0 Nov 11 19:08 1xc

10

https://pve.proxmox.com/wiki/Time_Synchronization

CS470Lab 6

drwxr-xr-x 2 root www-data 0 Nov 11 19:08 openvz
drwx------ 2 root www-data 0 Nov 11 19:08 priv

SIrW-Ir----- 1 root www-data 1704 Nov 11 19:08 pve-ssl.key
SrW-Ir----- 1 root www-data 1801 Nov 11 19:08 pve-ssl.pem
drwxr-xr-x 2 root www-data 0 Nov 11 19:08 gemu-server
SrW-Ir----- 1 root www-data 560 Nov 19 21:14 ssh_known_hosts

Let’s get a new certificate in place; this process should be familiar by now. First, move
/etc/ssl/openssl.cnf 10 /etc/ssl/openssl.cnf.orig, then use scp to get
/etc/ssl/openssl.cnf over from your OpenBSD VM to the same place on Proxmox. Also scp
/home/pki/data/cacert.peminto /etc/ssl on Proxmox for safe keeping. Since we’re running
around as root here, it’ll require less operations, but you should be very careful.

Edit the alternate_names section we added to the end of openssl.cnf and change it to reflect the
correct hostname for this Proxmox instance, so that we can next generate a new key and a certificate
request in /etc/pve/nodes/proxmox/ ...

cd /etc/pve/nodes/proxmox
openssl genrsa -out pveproxy-ssl.key 4096
openssl req -new -key pveproxy-ssl.key -out pveproxy-ssl.csr

Copy the CSR over to OpenBSD for signature ...

scp -p pveproxy-ssl.csr peter@openbsd:/home/pki/newreq.pem

... over on your OpenBSD VM, sign it; you should know what to do here by now, then copy it back.
scp -p peter@openbsd:/home/pki/newcert.pem pveproxy-ssl.pem

Proxmox expects a “full chain” PEM file in pveproxy-ssl.pem, so add the contents of your root CA
certificate file to it.

cat /etc/ssl/cacert.pem >> pveproxy-ssl.pem

Just like on Ubuntu, we also want to add the CA certificate to the system trust anchors ...

cp -p /etc/ssl/cacert.pem /usr/local/share/ca-certificates/cs470.internal.crt
... and tell the operating system to re-parse its cache of CA certificates.

update-ca-certificates

Finally, you should be able to restart Proxmox’s proxy process that governs all HTTP/HTTPS traffic and
re able to re-load your Proxmox instance’s web interface in your web browser with a trusted
certificate.

systemctl restart pveproxy

Now that we have our root CA’s chain of trust configured into Proxmox, it’s time to add LDAP.

11

CS470Lab 6

Go back to the web Ul, click on “Datacenter,” then “Permissions,” then “Realms.” Pull down the “Add”
drop-down menu to “LDAP Server.”

| recommend you call your realm cs470.internal ... you should know what to put in here, for the most
part. Use your user OU as your base domain name, uid as the user name attribute (I think it has name
and attribute backwards here), LDAPS for the mode, and there’s no fallback server ... that’d be the
hostname if we had a backup LDAP server, but we don’t.

Add: LDAP Server

General | Sync Options

Realm: cs470.intemal Server: openbsd.cs470.internal

Base Domain Name: dc=cs470,dc=internal Fallback Server:

User Attribute
Name:

uid Port:
Mode:

Default:

Verify Certificate:

Require TFA:

Comment

© Help Advanced

Then click on “Sync Options.” For user class, use posixAccount. For the group class, use posixGroup.
Group name attribute: cn ... user filter: (objectClass=posixAccount) ... group filter:
(objectClass=posixGroup) ... scope: “Users and Groups.”

LDAP Server
General = Sync Options

Bind User: none User classes: posixAccount

Bind Password: 3¢ Group classes: posixGroup

E-Mail attribute: User Filter: (objectClass=posixAccount]
Groupname attr.: Group Filter: (objectClass=posixGroup)

Default Sync Options

Scope: Users and Groups Enable new users: Yes (Default)

Remove Vanished Options

ACL: Remove ACLs of vanished users and groups.
Entry: Remove vanished user and group entries.

Properties: Remove vanished properties from synced users.

pancs

Hit OK. You should then see cs470.internal listed in the realms on the right. Select it, then click on

12

CS470Lab 6

8.

“Sync” to force Proxmox to grab a copy of pertinent users and groups matching the filter. Note any
errors in the output it shows.

Next, click the “Permissions,” just above the “Realms” section we were just configuring, then pull down
the “Add” drop-down to “User Permission.” Set the path to the root (/), choose your LDAP user, and

make it an administrator with the “Role” drop-down.

You should now be able to log in as your LDAP user for the rest of the lab.

cs470.internal

Language: English - English

/e User name:

In this lab, we’ll use NFS to store both our backup data and our Proxmox VMs. We’re going to use the
spare disk we created in lab 3 and mounted on /srv/nfs to store this data, so that we can dispose of
this data later to save space if you want to keep your labs.

Fortunately, we often don’t need as much storage as the provisioned size of our VM’s virtual storage
devices to store a VM, because of thin provisioning. When thin provisioning is configured with a virtual
hard disk, the virtual hard disk only consumes filesystem space on the host when virtual storage blocks
are written by the guest. Though we configured 16 GB of disk space on our FreeBSD VMs, as you can
confirm by the root filesystem line in df output ...

$ ssh freebsd df -h

Filesystem Size Used Avail Capacity Mounted on
/dev/dalp?2 14G 6.8G 6.8G 50%

devfs 1.0K 0B 1.0K 0% /dev
/dev/dalp1 260M 1.3M 259M 1% /boot/efi
rocky: /home 18G 2.3G 14G 14% /home
rocky:/srv/nfs 39G 1.7G 35G 5% /srv/nfs

... but thus far it’s only used about 6.8 GB of that space on its root filesystem. More than that 6.8 GB is
used, by content now deleted, or by swap space, but as is visible when | look at the actual size of my
VM on my host’s disk, it’s still using nowhere near 16 GB.

$ du -sh ~/doc/sdsu/VMs/cs470/freebsd.cs470.internal .vmwarevm
8.2G /Users/peter/doc/sdsu/VMs/cs470/freebsd.cs470.internal .vmwarevm

13

CS470Lab 6

This is the default behavior of virtual hard disks in VMware desktop hypervisors, and with Qemu’s
default virtual hard disk format, the . gcow file (short for “Qemu copy-on-write”). Those of you on ARM
Macs can see your VMs in ~/Library/Containers/com.utmapp.UTM/Data/Documents if you're
curious about the host footprint they take up. Windows users, look in /mnt/c/Users/*/Virtual
Machines via WSL.

I IMPORTANT NOTE: take note of your storage device name in your FreeBSD from the output of df. If
it starts with ada, it’s on a virtual SATA or PATA disk in your VM. If it starts with da, it’s on a SCSI disk.
Those of you on UTM probably have a vtbd device, which is a VirtlO device. Whatever you had in your
original FreeBSD VM, we’re going to replicate later.

To address the (intentional) lack of local storage on our Proxmox VM, we’re going to plug them into the
larger pool of storage accessible via the NFS server on our Rocky VMs. Go into your Rocky VM, and
make a directory for Proxmox storage ...

$ sudo mkdir -m 1777 /srv/nfs/proxmox

... add the following line to /etc/exports to share this new directory as a mount point with only your
new Proxmox VM ...

/srv/nfs/proxmox 10.42.77.76(rw,sync)
... then export it to the network with exportfs -a on your Rocky VM.

Log back into the Proxmox web interface, click on “Datacenter” in the “Server View” pane at the left,
then “Storage” in the datacenter screen at the right. Pull down the “Add” drop-down to NFS, and
supply rocky as the ID for the share and rocky.cs470.internal as the server. When you click the
drop-down widget to the right of “Export:” you’ll see it pause for a second while it scans available
shared folders on the NFS server. If you did everything correctly, you’ll be able to select

/srv/nfs/proxmox.

In the “Content” drop-down, select to store ISO images and disk images ... the options in this drop-
down don’t look like they are each on/off selections, but they are. Whereas VMware stores all back-
end resources for each VM together in a folder, Proxmox stores all VM configurations in selected
places, the disk images in others, the templates and ISOs for VMs in others, and so on. Each of these
directories corresponds to a tab that shows up in Proxmox when we select our NFS server from the
storage options. On /srv/nfs, we want to store both ISO files for creating VMs, and virtual disks for
our VMs.

14

CS470Lab 6

Backup Retention

rocky Nodes:

Server: rocky.cs470.internal Enable:

Export Isrvinfsiproxmox

Content ISO image, Disk image

Preallocation: Default NFS Version: Default

p—

Finally, click on “Add” to enable storage to NFS in your Proxmox instance. After you do, it should be
active. If you look inside that new Proxmox folder on your NFS server, you should see that Proxmox
has made itself at home.

$ ssh rocky 1ls -1 /srv/nfs/proxmox
total 1

drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.

nobody nobody 4096 Apr 17 01:04 dump
nobody nobody 4096 Apr 17 01:04 images
nobody nobody 4096 Apr 17 01:04 private
nobody nobody 4096 Apr 17 01:04 snippets
nobody nobody 4096 Apr 17 01:04 template

PANONNN

Just like Ubuntu in lab 4 or a regular Debian system, you can update the base operating system with
apt. Proxmox does a couple minor things to make updates harder to do out of the box without a
subscription, and only allows updates from “no-subscription” repositories, which may include less-
tested and potentially unstable updates.

We're going to ride the bleeding edge and do it anyways. Back in Proxmox’s web interface, find the
Proxmox node, and select the Repositories tab under Updates.

15

CS470Lab 6

Node "proxmox’

Q Search

& Summary !] The enterprise repository is enabled, but there is no active subscription!

[J Notes
>_ Shell

o System Warning

1

Network
Certificates
DNS

Hosts

Options Enabled Types URIs Components

-
(~]
Qo
o
(0]

Time [File: fetc/apt/sources list (3 repositories)

v deb http://ftp.us.debian.org/debian bookworm main contrib
v deb http://ftp.us.debian.org/debian bookworm-updat... main contrib
v deb hitp://security.debian.org bookworm-security main contrib

System Log
< Updates

2 Repositories
[l File: fetc/apt/sources list d/ceph list (1 repository)

U Firewall X 5 5 X
v deb hitps://enterprise_proxmox.com/debian/ceph-quincy bookworm enterprise

& Disks [=] File: fetc/apt/sources list. d/pve-enterprise.list (1 repository)

| LM v deb https://enterprise.proxmox.com/debian/pve bookworm pve-enterprise
O LVM-Thin
B Directory

= ZFS

First, select both enterprise repositories and disable them. Next, add a new repository, and select No-
Subscription from the dropdown. Click “Add” to finalize it and close the dialog, and click “Reload” to
put your changes into effect. You can ignore Proxmox whining about the no-subscription repository.

You get updates for Proxmox VE

The no-subscription repository is not recommended for production use!

Warning

< Reload Add

Enabled Types URIs Suites Components

[= File: /etc/apt/sources.list {4 repositories)

deb http /fftp.us_debian_org/debian bookworm main contrib

deb http /fftp.us_debian_org/debian bookworm-updat... main contrib

deb hitp://security.debian.org bookworm-security main contrib

deb http://download.proxmox.com/debian/pve bookworm pve-no-subscription @
[=] File: fetc/apt/sources list. d/ceph.list (1 repository)

hitps

https

16

CS470Lab 6

Then, update the package cache with apt update, and to install all patches, apt dist-upgrade.

10. Now let’s test e-mail; the Proxmox installer has postfix in a very lean but effective configuration in
/etc/postfix/main.cf if you take a look. My instance worked pretty much right away.

Edit /etc/aliases and insert an alias for root to aim at your LDAP user’s e-mail address, then run
newaliases, then test. Proxmox already has a mail binary; no need to go hunting for packages to test
e-mail here.

We’re done with Proxmox now, for a little bit. Those of you on ARM Macs are done with it, period —
even if we could run a nested VM on an ARM Mac (we can’t) — Proxmox is an amd64 VM, and your
FreeBSD instance is an arm64 VM. You wouldn’t want to try to emulate an ARM CPU inside an
emulated Intel CPU ... if you have an ARM Mac, you can shut down the Proxmox VM altogether, and be
glad you got to taste-test it.

part three: backup
It's time to take a backup of your FreeBSD VM.

11. Because we’re running this under controlled circumstances, we’re able to shut down our VM to ensure
a clean image — no services will be altering data while we take a backup — but we rarely have this luxury
in production. More often than not, you’ll want to back up a production system live to keep services
running ... and will want to find the correct switches to use with your backup utility for backing up a
live, mounted filesystem.

Let’s boot our FreeBSD VM into single user mode. First, log in on the console, and then tell it to
reboot.

$ sudo reboot

When you get back to FreeBSD’s boot menu, hit 2 to go into single-user mode. Sometimes, just like
with the installer, device detection continues past the presentation of a prompt ... here, in the
screenshot below, you can see FreeBSD note that authentication backends have an issue — how could
LDAP work without a network? — just before FreeBSD asks for the full pathname of a shell, or return for
/bin/sh. Hit return or enter, and find yourself at a # prompt. We’re in single-user mode now, with a
kernel loaded and not much else ... | want you to think of this as a blank slate, and you’re about to see
why.

Please note the i fconfig output in the next screenshot, confirming that the network is not

configured. em0 may have a cable connected (“status: active”) butit has no IP address and is not
marked as “UP.”

17

CS470Lab 6

12.

13.

B
at atal bus @ scbusl target @ lun @
: <NECVMWar VMware IDE CDR1@ 1.68> Removable CD-ROM SCSI device
: Serial Number 100000000000000000A1
1 33.300MB/s transfers (UDMA2, ATAPI 12bytes, PIO 65534bytes)
. Attempt to query device size failed: NOT READY, Medium not present
1 quirks=0Bx40<RETRY_BUSY>
at mpt@ bus B scbus? target @ lun @
¢ <VMware, VMware Virtual S 1.8> Fixed Direct Access SCSI-2 device
1 320.000MB/s transfers (160.000MHz, offset 127, 16bit)
: Command Queueing enabled
1 16384MB (33554432 512 byte sectors)
: quirks=0x148<RETRY_BUSY,STRICT_UNMAP>
ugend.3: <VMware, Inc. VMware Virtual USB Hub> at usbus®
uhub2 on uhub@
uhub2: <VMware, Inc. VMware Virtual USB Hub, class 9/0, rev 1.18/1.08, addr 3> on usb
uso
Root mount waiting for: usbus@ usbusl
uhubl: 6 ports with 6 removable, self powered
uhub2: 7 ports with 7 removable, self powered
ugenl.2: <VMmare, Inc. VMmare Virtual USB Video Device> at usbusl
202411~ 0! Y55 0 - init 19 - - NSSWITCH(_nsdispatch): ldap,
ndpwent, DHT T_Jﬂ , @
Enter full pathname of &l or 0 /sh: /bin/tcsh
ifconfig e
emd: fl 414 SROADC) S LE) ,LOWER_UP> metric @ mtu 1500
A AGGING 1BO_MTU, VLAN_HIWCSUM
RO,V '_

PBBbaseT <full-duplex>)

PERFORMNUD, IFDISABLED, AUTO_L INKLOCAL

Bring your network interface up by configuring it manually. For me, the right command was the
following. You may have to substitute another network interface name, and as always, will almost
certainly have to swap out some octets in my IP address for yours.

ifconfig em0 10.42.77.72 netmask 255.255.255.0

You might see a boldface kernel log message stating that this command has brought your interface’s
link state to “UP.” Using ifconfig again should confirm it.

Since your name server is already configured in /etc/resolv.conf, and your name server and your
lab VMs are on the same subnet as your FreeBSD VM — you don’t need a default route configured to
talk to them — you should now be able to ping your other lab VMs by name.

Let’s try mounting both shares from our Rocky VM.

mount /home && mount /srv/nfs

Now we have our backup source exactly as we want it: our FreeBSD VM’s root filesystem is mounted
read-only, so nothing is in motion and we know we'll get a clean image, and more than enough disk
space is available on a separate device (the NFS share) to accept the backup. Note: this could be an
external hard disk, or a flash drive ... but network storage is much faster, and as you have now seen,
it’s also not very difficult to get connected.

18

CS470Lab 6

/ # ifconfig em@ 18.42.77.72
mount

/ # mount /s

ifconfig

metric @ mtu
0_MTU, ¥
RO, YLAN_HWFILTER ’
ether B0:(.
inet 18.4: 2 netmask
media: Ethernet autoselect
status:
ndb optio
/ ount

. Let’s start sshd on our FreeBSD VM.

/etc/rc.d/sshd start

The startup script for sshd reported that it was “performing [a] sanity check on [the] sshd
configuration,” and then that it was starting sshd. The output of ps should now show that you’re
running sshd.

You should now be able to log into your FreeBSD VM using SSH.

Even though your FreeBSD VM has its root filesystem mounted read-only, has no default route
configured, and has literally nothing besides the kernel, sshd, and a couple shells started up ... it’s still
useful, up to the point that you configure it. If you're like me and your hostname is a part of your shell
prompt you might notice that the system doesn’t even have a hostname configured right now.

Again, it is a blank slate. Remember: this can be very useful for isolating issues when troubleshooting.

$ ps auxww

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND

root 11 200.0 0.0 0 32 - RNL 22:13 30:19.11 [idle]

root 0 0.0 0.2 0 480 - DLs 22:13 0:00.58 [kernel]

root 1 0.0 0.5 11700 1076 - ILs 22:13 0:00.00 /sbin/init -s
root 2 0.0 0.0 0 32 - WL 22:13 0:00.34 [clock]

root 3 0.0 0.0 0 48 - DL 22:13 0:00.00 [crypto]

root 4 0.0 0.0 0 48 - DL 22:13 0:01.35 [cam]

root 5 0.0 0.0 0 16 - DL 22:13 0:00.00 [busdma]

root 6 0.0 0.0 0 16 - DL 22:13 0:00.00 [mpt_recovery0]
root 7 0.0 0.0 0 16 - DL 22:13 0:00.06 [rand_harvestq]
root 8 0.0 0.0 0 48 - DL 22:13 0:00.05 [pagedaemon]
root 9 0.0 0.0 0 16 - DL 22:13 0:00.00 [vmdaemon]

root 10 0.0 0.0 0 16 - DL 22:13 0:00.00 [audit]

root 12 0.0 0.3 0 688 - WL 22:13 0:00.24 [intr]

19

CS470Lab 6

15.

root 13 0.0 0.0 0 48 - DL 22:13 0:00.01 [geom]

root 14 0.0 0.0 0 16 - DL 22:13 0:00.00 [sequencer 00]

root 15 0.0 0.1 0 160 - DL 22:13 0:00.10 [usb]

root 16 0.0 0.0 0 32 - DL 22:13 0:00.01 [bufdaemon]

root 17 0.0 0.0 0 16 - DL 22:13 0:00.00 [vnlru]

root 18 0.0 0.0 0 16 - DL 22:13 0:00.00 [syncer]

root 30 0.0 0.0 0 16 - DL 22:22 0:00.00 [nfscl]

root 33 0.0 0.0 0 16 - DL 22:22 0:00.00 [nfscl]

root 57 0.0 4.4 23620 10032 - 1Is 22:25 0:00.00 sshd: /usr/sbin/sshd
[listener] 0 of 10-100 startups (sshd)

root 58 0.0 5.5 24312 12372 - 1Is 22:26 0:00.04 sshd: peter [priv](sshd)
peter 60 0.0 5.7 26872 12836 - S 22:26 0:00.03 sshd: peter@pts/0 (sshd)
root 19 0.0 3.0 22304 6788 v0O 1Is+ 22:13 0:00.05 -sh (tcsh)

peter 61 0.0 5.2 25440 11696 0 Ss 22:26 0:00.05 -tcsh (tcsh)

peter 73 0.0 1.3 13452 2888 0 R+ 22:28 0:00.00 ps auxww

As mentioned previously in lecture, all of the processes with names inside hard brackets are parts of
the kernel, mocked up to look like processes, so that they can be monitored and manipulated like
processes.

In that shell in SSH, let’s start a backup of the root filesystem, to that folder ... note you may have to
substitute in the name of your root filesystem’s device (/dev) file, and may want to adjust your output
filename accordingly ...

$ dump auf /srv/nfs/freebsd-dalp2.dump /dev/dalp2
... | want you to note a few things here.

First, you don’t need to be root to back up the filesystem (look at the permissions on /dev/da0p2 or
whatever your disk partition device file is) because you’re in the operator group, unless you missed
that step. This is a historic privilege delegation so that rootly powers didn’t need to be granted to
overnight sysadmins (“operators”) to allow them to run backups.

$ 1s -1 /dev/daOp2
Crw-r----- 1 root operator 0x63 Jul 26 22:13 /dev/daOp?2

Moreover, | have retained the name of the hostname and the filesystem in the name of the backup
file. Not only is this just helpful, but it will become really important if you have multiple hosts and
multiple filesystems in backup storage. I'd typically also recommend you include a date stamp in each
backup file name, but we can skip that here.

Finally, the syntax for dump is designed to mirror the syntax of the tar command it was designed to
replace, for many use cases. The archaic a switch prevents dump from caring about any predefined
tape size limits ... a is short for “all,” as in “dump it all.” The u switch tells dump to update the file
/etc/dumpdates Where it keeps track of backups, for determining which files to grab in incremental
backups ... this will generate an error, because our root filesystem is still mounted read-only, but we’d
want to use this switch ordinarily. The £ switch says the next argument is the filename of the backup
target. Historically, this could be the device file name of a tape drive, an optical disk, or as we provided
above, a regular file name.

You will see dump immediately spin up through several rounds of imaging your root filesystem. | went

20

CS470Lab 6

16.

17

ahead and interrupted the backup with a control-c and confirmed with a yes to interrupt the backup,
and get a command line back. Please remove the incomplete backup ... and don’t worry, we’re going
to do this another way ... a really cool way that’ll help set you up for how to do distributed backups in
the future.

$ rm /srv/nfs/freebsd-dalp2.dump
Log out of the SSH session. Get back on the console of your FreeBSD for this step.

Let’s make a directory to separate storage for artifacts from this lab.

mkdir -m 770 /srv/nfs/freebsd

Note that we made the freebsd directory group-writable, but not world-writable with the permissions
770 above. It would’ve been really hard for somebody to compromise your NAT'd VM network, but
this is to offer some protection of your backup files somewhat from imaginary bonus users of our
private network. Just because you’re paranoid doesn’t mean they’re not after you.

Now let’s copy over copies of the dump and restore binaries, in case we need them while we're
restoring the backup later, and a copy of the filesystem table, /etc/fstab, into the NFS share.

cp -p /sbin/dump /sbin/restore /etc/fstab /srv/nfs/freebsd/

Note that the output of this command ...

1dd /sbin/dump /sbin/restore

... sShows that dump and restore are dynamically-linked binaries. Traditionally, binaries under /sbin
are statically linked (hence the s in sbin) versions that can be used when the operating system isn’t
fully started up, and the dynamic linker isn’t ready to go, such as in single-user mode. Single-user
mode has apparently evolved, as our first dump started to go.

. SSH into your Rocky VM from your host operating system, and look at the directory we made recently

to host the backup, using the d switch with 1s to look at the permissions and the directory itself,
instead of its contents.

$ 1ls -1d /srv/nfs/freebsd/
drwxrwx---. 2 nobody nobody 4096 Apr 17 23:22 /srv/nfs/freebsd

Note that the directory is owned by the nobody pseudo-user, because we were root (by way of sudo)
in that shell, and as we said in lab 3, NFS squashes the root user into the nobody account over NFS
shares, for security purposes. Just because somebody is root over there, doesn't mean we want them
to bypass access controls here, on our file server.

Also note that you are currently unable to use those group permissions and list the contents of the
directory itself ...

21

CS470Lab 6

18.

$ 1s -1 /srv/nfs/freebsd/
ls: cannot open directory ’/srv/nfs/freebsd/’: Permission denied

... because you're not a member of the nobody group ...

$ id
uid=1001(peter) gid=1001(peter) groups=1001(peter), 998 (render), 999 (input)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

... and typically, that's the idea behind the name “nobody.” Not only is root nobody on our file server,
but nobody should really be using root rights to push files around and accidentally disclose things they
shouldn’t. This time, however, we want to be able to share files with that remote user, and to prevent
our imaginary friends in our lab environment (we really have no other intended users besides ourselves
in them) from seeing the sensitive backup file we're about to create.

I'IMPORTANT NOTE: if we had finished creating that backup file, and left it in /srv/nfs, then anybody
with access to our file server would be able to read ... a backup of our FreeBSD VM and our mail server.
Since it’s just each of us on our own network here ... I'm just going to point that out, and we’re going to
keep moving ... but if this was a production environment, and there was a real live name server and
directory server in that dump-file ... wow, that would be bad.

Please edit /etc/group and add yourself to the nobody group and make sure you can read and write
to that directory with your regular user account on Rocky Linux. You should know how to do this by
now, and what you have to do to get your new permissions.

With that set up, now use ssh from your Rocky VM to get into your FreeBSD VM and remotely dump
its root filesystem to stdout (using a dash as the dump filename, like we did in lab one while unpacking
the src and ports trees). This causes the output — the backup data itself — to come back to the local
system, where we use that to pipe it into a local gzip command on your Rocky VM, to compress the
backup before stuffing it into a file. This command will ask you for a password, the login password for
your FreeBSD VM, before it begins ... unless, of course, you're using ssh-agent forwarding.

As always, make sure the device file names match yours, in the command below before running it ...

$ ssh freebsd dump af - /dev/daOp2 | gzip -c¢ > /srv/nfs/freebsd/dalp2.dump.gz

If you did your lab two and three setups correctly, this should work. If not, you should know what to
do by now. That last command may take a while to run, depending on the speed of your computer,
primarily your CPU and storage device (an SSD helps a bunch here). Let it run until finished this time.

DUMP: Date of this level 0 dump: Fri Jul 26 23:26:10 2024
DUMP: Date of last level 0 dump: the epoch

DUMP: Dumping /dev/daOp2 (/) to standard output

DUMP: mapping (Pass I) [regular files]

DUMP: mapping (Pass II) [directories]

DUMP: estimated 6542463 tape blocks.

DUMP: dumping (Pass III) [directories]

DUMP: dumping (Pass IV) [regular files]

22

CS470Lab 6

19.

DUMP: 46.07% done, finished in 0:05 at Fri Jul 26 23:37:03 2024
DUMP: 93.62% done, finished in 0:00 at Fri Jul 26 23:36:52 2024
DUMP: DUMP: 6543904 tape blocks

DUMP: finished in 640 seconds, throughput 10224 KBytes/sec
DUMP: DUMP IS DONE

When it is done, you’ll have a full backup of your FreeBSD VM’s root filesystem on your NFS share,
under /srv/nfs/freebsd. We used gzip because the FreeBSD version of dump doesn’t have
compression hooks; the size of the backup to be about the size of the used space on the filesystem (6.8
GB), but the compressed backup was just under 3 GB for me. If your results are slightly different, it’s
not anything worth caring about, so long as compression is demonstrably working to save some space.

$ 1ls -1 /home/nfs/freebsd

total 3.0G
-rw-r--r--. 1 peter peter 3.0G Jul 26 23:36 daOp2.dump.gz
-r-xr-xr-x. 1 nobody nobody 57K May 31 02:05 dump
-rw-r--r--. 1 nobody nobody 245 Jun 24 03:32 fstab

1

Sr-Xr-Xr-x. nobody nobody 82K May 31 02:05 restore
Also note: if our VM NAT network were a company network, we would never, never ever expose a full
backup of a system like this (especially a backup of the mail server!).

Also also note: if we had multiple filesystems on the computer we were backing up ... we’d just repeat
dump, for each of the filesystems, each to its own output file. That is, of course, if they’re filesystems
intended for Unix or Linux ... if they’re not, dump won’t know what to do.

Of course, we have precisely one of those cases here, an EFl system partition used to store boot
loaders. On your FreeBSD VM, check out /etc/fstab ...

$ cat /etc/fstab

... unless you messed up picking your firmware in lab 2, you’ve got an MS-DOS (msdosfs) filesystem
that is ordinarily mounted at /boot/efi. If you don’t have a filesystem mounted on /boot/efi take
no action, but make sure you understand the rest of this step anyways.

$ sudo dump Oaf /srv/nfs/freebsd/dalp1.dump /dev/dalp1
sudo: unable to open /var/run/sudo/ts/1001: Read-only file system
Password:
DUMP: Date of this level 0 dump: Fri Jul 26 23:48:22 2024
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/daOp!1 to /srv/nfs/freebsd/dalp1.dump
dump: Cannot find file system superblock: No error: 0

You can ignore this warning ...

sudo: unable to open /var/run/sudo/ts/peter: Read-only file system

... all it means is that sudo isn’t able to store its temporary files. This is because the root filesystem is
mounted read-only by design right now, in order to get a cleaner backup. This means you’ll not be
given a grace period after each successful use of sudo, and will have to type your password each time
you use it. Not a big deal, all the more so with the failure of the overall operation.

23

CS470Lab 6

20.

With cannot find superblock, dump is telling you that it’s looking for evidence of a Unix filesystem
and failing to find it. This is one of those places where tar still excels, as a (mostly) filesystem-agnostic
tool. Use tar to back up the EFI system partition.

$ cd / && sudo tar zcvf /srv/nfs/freebsd/dalpl.tar.gz ./boot/efi
You should see just a few files and a couple directories; it’s not much.

On your FreeBSD VM'’s console, shut it down and power it off.

shutdown -p now

part four: replica setup (Intel CPUs)

If you have an Intel CPU, you’ll create a VM in Proxmox —a VM inside a VM! — and restore your backup to it. If
you have an ARM Mac, please don’t hesitate to read this to see what you’re missing, but take no action until
the version of part four for your ARM Mac, a couple pages ahead.

21.

22.

Let’s download a copy of the correct FreeBSD ISO to where our Proxmox can use it.

Then, in Proxmox’s web Ul, open up “Datacenter,” then “proxmox,” then your NFS storage. On the
right, click on “ISO Images.” You can then either click “Upload” then find the file on your host
computer’s local filesystem, or you can click “Download from URL” and find the download URL for the
FreeBSD 14.1 amd64 ISO we used in lab 2.

Next, select “proxmox” and click “Create VM” in the upper right-hand corner of the web interface.

In the first pane, “General,” all you need to do is make sure the node is set to proxmox, your
hypervisor, and pick a name for your VM. | used freebsd.cs470.internal. You don’t need to touch
anything else here.

In the second pane “0S,” choose to use an ISO and select your FreeBSD ISO from the prior step from
your NFS server. Under “Type,” choose “Other.” Next.

In the “System” pane, choose to use a “q35” machine, an UEFI firmware (BIOS), and a VirtlO SCSI
controller. Create an EFI disk using your NFS server as the backing store, and uncheck the box to pre-
enroll keys; this is for secure boot and FreeBSD doesn’t support secure boot. Next.

In the “Disks” pane, select to use a SCSI bus if you had a da device in your original FreeBSD VM, or a
SATA bus if you had a wd device. Choose to use your NFS server as backing storage, and a disk size of
16 GB unless you used more in your original VM. That’s it here; there’s nothing to do in the
“Bandwidth” pane. Next.

I IMPORTANT NOTE: Again, remember your hard disk type from your original FreeBSD VM... whether it
24

CS470Lab 6

was a wd device (SATA/PATA) or an sd device (SCSI), make sure you make the correct substitutions in
the rest of this lab.

In the “CPU” pane, choose to use one socket and two cores. The standard CPU type is fine. Next.
In the “Memory” pane, choose to use 512 MiB of RAM. Next.

On the “Network” pane, choose to use the only bridge available — we haven’t set up any network
abstractions here — to share the network with your Proxmox host and be directly connected to your
VMware NATwork. The default mode, an Intel E1000, is fine too. Turn off “firewall.” Next.

Review your settings in the “Confirm” pane, and hit “Finish” to conclude the VM setup.

23. You should now see your first VM, freebsd.cs470.internal, under your hypervisor in the Proxmox Ul.

X PROXMOX Virtual Environme QD Create VM | @ CreateCT |
S o <

» Start 4 >_ Co

100 (freebsd.cs470.internal)

Note the web Ul’s “console” menu in your new VM'’s view; you’ll use a “NoVNC” console to provide the
Ul here for the remaining steps in this lab. When you open it up, you’ll get a power button in that
console window.

part four: replica setup (ARM Macs)

On ARM Macs, we’re going to create another VM in UTM to use as our replica and restore target.

Create a new VM in UTM, with virtualization:
e guest OS: other
e (CPU: two cores

e RAM:512 MB
e hard disk: 20 GB

Put FreeBSD-14.2-RELEASE-arm64-aarch64-disc1.iso from lab two into the virtual CD/DVD drive.

part five: restore from backup

Generally, as you’ll see, re-creating a system, whether it’s a physical-to-virtual machine conversion, a disaster
recovery, or whatever involves configuring and partitioning storage, creating filesystems, restoring content

25

CS470Lab 6

into those filesystems, adjusting for any changes to configuration, and making sure the new storage devices
boot properly. We go through all these steps in this part of the lab.

24. Boot up your replica VM — it may take a bit to fire up on Proxmox —and choose a “multi-user” boot at
the installer boot loader menu. You should be greeted by familiar options.

° QEMU (freebsd.cs470.internal) - noVNC

O 8 cs470.internal

FreeBSD Installer

1Welcomef
Welcome to FreeBSD! Would you like to
begin an installation or use the live
system?

[Install 1M Shell 1 [Live Susteml

This time, let’s choose the “live system” option to give us an interactive rescue environment we can
use to restore our FreeBSD VM from the backup we just made. After you choose “live system” you’ll
be dropped out to a login prompt. Use root as your username; it will not ask for a password.

When you get to a shell, use the dmesg command to confirm you’ve got a device named ada0 or da0 or
vtbd0 or whatever you had in your original VM, of the appropriate size ...

dmesg | grep da

... dmesg is short for “device message,” and it spits out the same list of device detection messages the
FreeBSD kernel shows during boot time. This is really handy if you’re ever curious what’s attached to a
machine, you want to confirm your storage bus type like we’re doing now, or you just missed it as it
went by during the boot process. My output looked like the below ... yours may differ slightly, within
reason, but should generally be the same.

26

CS470Lab 6

25.

26

[X X J QEMU (freebsd.cs47 ernal) - noVNC

O B https://proxmox.cs470.internal: novnc=18vmid=100& 470.inter! oXmc &cmd= w =

Documents installed with the suystem are in the /usr/local/share/doc/freebsd/
directory, or can be installed later with: pkg install en-freebsd-doc
For other languages, replace "en” with a language code like de or fr.

Show the version of FreeBSD installed: freebsd-version ; uname -a
Please include that output and any error messages when posting questions.
Introduction to manual pages: man man

FreeBSD directory layout: man hier

.0 change this login announcement, see motd(5).
(oot@:" # dmesg | grep da
FreeBSD is a registered trademark of The FreeBSD Foundation.
efirtcd: registered as a time-of-day clock, resolution 1.0008888s
kvmclockB: registered as a time-of-day clock, resolution 6.000081s
atrtcBd: registered as a time-of-day clock, resolution 1.0008088s
virtio_pciB: <VirtIO PCI (legacy) Balloon adapter> port Bxd348-8xd37f mem 8Bx8000
POPBB-0xB8BBBA3fff irg 11 at device 3.8 on pciB
vtballoon®B: <VirtIO Balloon Adapter> on virtio_pci@

at sumB bus B scbus2 target @ lun B8

: <QEMU QEMU HARDDISK 2.5+> Fixed Direct Access SPC-3 SCSI device

: 3.308MB/s transfers

. Command Queueing enabled

» 1824BMB (28971528 512 byte sectors)

If you’re having issues finding the device using grep as a filter, try piping dmesg through more and
slowly reading what you see. The storage device should be obvious once you set eyes on it. On my
ARM Mac, in UTM, my original storage device was vtbdo, but FreeBSD/arm64 declares the presence of
vtb1ko0 instead. | don’t know why the ARM64 port does this — it seems to break with decades of
tradition, but the command ...

geom disk list

... showed that even though dmesg declared vtb1k0, the disk device is really vtbdo. Lookingin /dev
confirmed this as well. Strangely, there is no man page for either vtbd or vtb1k. There’s a page for
virtio_blk that seems to be appropriate, but doesn’t say why or how. I’ll continue searching for this
later; if any of you find anything, please let me know.

Substitute whatever disk device you have in the commands below. I tried to set it up so that you’d
not have to change /etc/fstab after unpacking the backup image, but if you have a different disk
device, remember to change £stab appropriately.

Let’s partition the replica VM’s virtual hard disk. These commands will parallel not only what was done
for FreeBSD by its installer in lab 2, but also what’s been done with every other VM to set up the disk.

First, let’s lay down a fresh GUID/GPT partition table on /dev/da0, my VM’s virtual hard disk ...

gpart create -s gpt da0l

gpart should reply with da0 created ... if not, something’s wrong, and please trace back.

. ARM Mac and Intel people who did it the right way the first time © with EFI firmware in their

FreeBSD VMs: Create an EFI system partition. EFI firmware requires a dedicated partition for boot

27

CS470Lab 6

27.

28.

loaders, hence the label “gpefiboot” below.
gpart add -t efi -1 gpefiboot -a 4K -s 256M daOl

People with Intel CPUs and legacy BIOS FreeBSD VMs who missed the EFl ask ® in lab 2: Let’s create
a boot partition ...

gpart add -t freebsd-boot -1 gpboot -a 4K -s 492K da0

... you can ignore the warning about the partition not being aligned properly. Note: we are creating a
BIOS boot partition here. BIOS firmware can boot GPT disks, and we’re using that to our advantage
here to keep the direction simple for those of you who were asleep at the wheel in lab 2. WAKE UP!

No matter which command you ran above, you should get an affirmative reply from gpart.
Next, let’s create a partition for a FreeBSD filesystem, with the label for a root filesystem ...

gpart add -t freebsd-ufs -1 gprootfs -s 15G dal

... lused 9G here for a 15 gigabyte (gibibyte?) filesystem, because | used a 16 GB replica virtual storage
device. Whatever you picked for the size of your replica’s storage device, save 1 GB or so for virtual
memory.

It should reply da0p2 added.

Now, add a swap partition ...

gpart add -t freebsd-swap -1 gpswap da0l

... this command should reply da0p3 added. Note we did not include a size, which implicitly tells
gpart’s add verb that this partition can use the remainder of available space on the storage device.
Let’s also “label” the swap area as swap. This command returns nothing on success ...

glabel label swap /dev/daOp3

gpart show should help you validate your work.

28

CS470Lab 6

29.

30.

L X X] QEMU (freebsd.cs47 ernal) - noVNC
O B httpsy/Jproxmox.csa70.internal

fusectors: 63
fwheads: 255

create -s gpt da@
add -t efi -1 gpefiboot -a 4K -s 256M daB
add -t freebsd-ufs -1 gprootfs -s 9G da@

add -t freebsd-swap -1 gpswap dad

" # glabel label swap /dev/daBp3
~ # gpart shouw
573178 cd8 MBR (1.1G)
573178 - free - (1.16)

573178 1s096608/14_1_RELERSE_AMDB4_CD MBR (1.1G)
573178 - free - (1.16)

28971448 daB® GPT (106)
524288 efi (256M)
18874368 freebsd-ufs (8.686G)
193388696 1572784 freebsd-swap (768M)

root@:" #

Use i fconfig to determine the name of your network interface device, and note that it might be
different from what you had when your VM was on Fusion or Workstation ... mine was emo0 in Fusion,
and an Intel E1000 is an em too. (Remember: 100 is your “loopback” interface, a virtual interface.)

Whatever it is, let’s configure your network now ...

ifconfig emO0 up 10.42.77.72 netmask 255.255.255.0

... and you should now be able to ping your other VMs by IP address, but not by name ... see
/etc/resolv.conf ... mine is a link to a file under /tmp (because /etc is on a read-only filesystem, an
optical disk). Your resolver is not configured, but it could be if you really wanted.

Next, let’s create a new filesystem within the partition set aside for the root filesystem, the one with
the bulk of the space. Note that all we’ve done thus far is create the various abstractions, boot code
partitions, and define what is where within your virtual machine’s virtual disk. Now, we’re going to
start re-creating content.

newfs -L rootfs -U /dev/dalp2

Depending on the size of the filesystem, newfs can generate a lot of output ... as it creates the
filesystem, it uses an algorithm to calculate where backups of the all-important filesystem “superblock”
should go, in case a drive problem kills one, or a few ... we’d still really, really like to get our data back.
Once upon a time, | used to save the output of this command to an offline text file, because | have
indeed been there with a dead disk, hoping a superblock backup would light the way for fsck to save
some data.

Mount the new root filesystem on /mnt ...
29

CS470Lab 6

mount /dev/daOp2 /mnt

Now, cd into the new root filesystem ...

cd /mnt

... make a temporary directory for restore to use for temporary space (/tmp is the default and will run
out way, way too fast) ...

mkdir /mnt/restore

... configure that directory in the environment so that restore knows where to put its temporary files ...

TMPDIR=/mnt/restore
export TMPDIR

... and then pull down the backup of the lab two VM from the lab three NFS server, shared via the web
server in the nginx container from lab four.

I IMPORTANT NOTE: you'll need to modify the below single-line command for it to run, notably your IP
and backup file name, if yours is different. Once you get it working properly, it will take a little while to
run. Letit.

fetch -q -o - https://10.42.77.74/nfs/freebsd/dalp2.dump.gz | gunzip -c | restore
rvf - | tee /mnt/restore/restore.out

tee is like a plumbing connector; output from restore will still go to console, but will also go to the file
/mnt/restore/restore.out ... when you see the final line of output, “checkpointing the restore,” it’s
done.

Predictably, this command should produce a certificate error, because we’re accessing our Ubuntu
VM’s secure web server by its IP address. What’s in its certificate? Its hostname. By adding - -no-
verify-hostname after fetch we remove complaints about the hostname not matching, but still it
complains about not trusting where our web server’s certificate came from.

By adding - -no-verify-peer, we fix this as well, but we still get an error ... either “forbidden” or “not
found.” Of course you did ... because the user nginx is running as on our Ubuntu VM isn't in the
nobody group, either. Let's not add it there, though ... go back over to your Rocky VM and run the
following command to add world-execute permissions to the folder we're fetching this backup from ...

$ sudo chmod +x /srv/nfs/freebsd

... read permissions are required to see the listing of a directory ...

$ 1ls -1d /srv/nfs/freebsd/
drwxrwx--x. 2 nobody nobody 4096 Apr 17 23:51 /srv/nfs/freebsd/

30

CS470Lab 6

... but now that everybody can execute the directory, they're allowed to access files in it if and only if
they know the name of the file they’re trying to access. Go back to your new FreeBSD VM's console,
and try that fetch command above again. It should pause briefly, then explode an output of files it’s
copying from the backup ... restore is running. It might take a while. It's way slower on Proxmox than
it was on VMware. When it’s done, you should see something like this if it was successful ...

QEMU (freebsd.cs470.internal) - noVNC
mox.cs470.internal:8 &vi 470,

hard link ./usr/bin/nex->./usr/bin/nvi
hard link ./usr/bin/less->./usr/bin/more
hard link ./usr/bin/chgrp->./usr/sbin/chouwn
hard link ./usr/bin/w->./usr/bin/uptime
hard link ./usr/bin/ee->./usr/bin/ree
hard link ./usr/bin/edit->./usr/bin/ree
hard link ./usr/bin/compress->./usr/bin/uncompress
hard link ./usr/bin/ranlib->./usr/bin/ar
hard link ./usr/bin/atrm->./usr/bin/atq
hard link ./usr/bin/at->./usr/bin/atq
hard link ./usr/bin/batch->./usr/bin/atqg
hard link ./usr/bin/cu->./usr/bin/tip
hard link ./usr/bin/llvm-readobj->./usr/bin/1llvm-readelf
hard link ./usr/bin/1lvm-objdump->./usr/bin/ob jdump
hard link ./usr/bin/clang-cpp->./usr/bin/clang++
hard link ./usr/bin/cpp->./usr/bin/clang++
hard link ./usr/bin/c++->./usr/bin/clang++
hard link ./usr/bin/clang->./usr/bin/clang++
hard link ./usr/bin/cc->./usr/bin/clang++
hard link ./usr/bin/c++filt->./usr/bin/llvm-cxxfilt
hard link ./usr/bin/llvm-cov->./usr/bin/gcov
Set directory mode, owner, and times.
Check the symbol table.
Checkpointing the restore

... and this is what it looked like for me the last time it actually worked through until the end, for the
first time in a few years, on the first attempt. This worked reliably for several years, from the time |
wrote this lab until a diagnosis-defying bug was introduced somewhere in the stack around the time of
FreeBSD 13.0’s release. On each of my first three times running restore in 2022, it failed on me. | was
hoping it would be fixed with FreeBSD 14, but apparently, it hasn’t. It has repeatedly failed on me ever
since, both with VMware ESXi as the hypervisor and with Proxmox ... so I've eliminated the hypervisor,
but still not pinned down the root cause ... it could be VMware, Rocky Linux, nginx, NFS, or FreeBSD.
So I've worked around it ... see below.

The below screenshot is of a hard failure of restore ... if you have problems, I’'m leaving in

troubleshooting information from prior years here below. If this happens to you, key in y until it’s
done asking you questions to tell it you want to abort, and read below.

31

CS470Lab 6

31.

QEMU (freebsd.cs470.internal) - noVNC
\&novnc=1&vn node: d= w

No such file or directory
» cannot create hard link ./usr/bin/llvm-objdump->./usr/bin/objdump: No ¢
or directory
: cannot create hard link ./usr/bin/clang-cpp->./usr/bin/clang++: No such
file or directory
warning: cannot create hard link ./usr/bin/cpp->./usr/bin/clang++: No such file
or directory
warning: cannot create hard link ./usr/bin/c++->./usr/bin/clang++: No such file
or directory
warning: cannot create hard link ./usr/bin/clang->./usr/bin/clang++: No such fil
+ or directory

» cannot create hard link ./usr/bin/cc->./usr/bin/clang++: No such file g

warning: cannot create hard link ./usr/bin/c++filt->./usr/bin/1llvm-cxxfilt: No s
uch file or directory
warning: cannot create hard link ./usr/bin/llvm-cov->./usr/bin/gcov: No such fil
e or directory
bad entry: incomplete operations
name: ./COPYRIGHT
parent name .

./proc

. LERF
5

I1'YOU SHOULD ONLY DO THE REST OF THIS STEP IF restore FAILS ... AND PLEASE E-MAIL ME TOO. IF
THIS AFFECTS YOU, | WANT TO KNOW. IF THIS AFFECTS ANY PEOPLE ON ARM MACS AND UTM, I'M
REALLY CURIOUS ... | HAVE NO RECORD OF ANYBODY EVER RUNNING INTO THIS PROBLEM ON ARM64.

If restore fails on you, you can try a couple things to solve it. I’'ve had both work. Sometimes.

The first: try again. Maybe a few times. Go back and unmount, re-initialize the new root filesystem,
mount it, create the temporary directory, and run restore again. | don’t make this suggestion idly, to
just try it again. The practice unmounting, re-mounting, and re-initializing the filesystem of the
FreeBSD replica will be worth it if this affects you.

In order to try again, cd to the root of the file tree to get out from under /mnt, then umount /mnt, run
the newfs command again, remount the filesystem, re-make /mnt/restore, cd /mnt, and then run
the fetch/restore pipeline again. | recommend unmounting and wiping the filesystem with newfs
after each failure.

The second method: read the backup via NFS instead of HTTPS. Make a new mount point under /tmp
and mount /home from your Rocky VM on it. Make sure to appropriately adjust the path of your
backup file when restoring, something like ...

mkdir /tmp/nfs && mount 10.42.77.73:/srv/nfs /tmp/nfs
cd /mnt && gunzip -c¢ /tmp/nfs/freebsd/dalp2.dump.gz | restore rvf - | tee
/mnt/restore/restore.out

... this typically works for me. If neither of these methods work for you, you need to let me know ASAP.

If your network device name changed, fix the network configuration portion of /etc/rc.conf ... or, as
it’s mounted right now, /mnt/etc/rc.conf ... if so, this should just be changing the name of the

32

CS470Lab 6

32.

33.

34.

variable i fconfig_em0 or the variable name on whatever line has your FreeBSD VM’s IP configuration.

If your storage device name changed, edit /etc/fstab (under /mnt of course) and make sure each
device file reference in that file reflects your new storage device name, or you’ll be booting into single-
user mode later to fix it.

This step is only for ARM Mac and Intel people with EFI firmware in their FreeBSD VMs.
Next, let’s make the drive bootable by adding boot code to the EFI system partition. First, let’s lay

down a filesystem. By standard, the filesystem used for the EFI system partition is FAT (the old MS-
DOS filesystem).

newfs_msdos /dev/daOp1

Mount it.

mount -t msdos /dev/daOp1 /mnt/boot/efi

Grab the backup of the EFI system partition and unpack it.

cd /mnt && fetch --no-verify-hostname --no-verify-peer -gq -o -
https://10.42.77.74/nfs/freebsd/dalp!.tar.gz | tar zxvf -

You should see a few files unpack.
This step is only for ARM Mac and Intel people with EFI firmware in their FreeBSD VMs.

We need to tell the VM’s EFI firmware that there’s a new boot option ...

efibootmgr -c -a -1 /mnt/boot/efi/efi/boot/bootx64.efi
... you should see that you created a new boot method that supersedes the current one.

If you’re on an ARM Mac, clearly bootx64.efi doesn’t apply (x64 refers to 64-bit Intel). It should be
obvious which filename you should supply instead from the files you extracted in the prior step.

Here’s a screenshot from an Intel VM.

33

CS470Lab 6

QEMU (freebsd.cs470.internal) - noVNC

mox.cs470.internal: &vmid=100&vmnam ode:

./mnt # mount -t msdos /dev/daBpl /mnt/boot/efi
root@:/mnt # cd /mnt
root@:/mnt # fetch --no-verify-hostname --no-verify-peer -q -o - https://18.42.7
7.74/freebsd/daBpl.tar.gz | tar zxvf -
./boot/efi/: Can't restore time: Invalid argument

X
x ./boot/efi/efi/
x ./boot/efi/efi/freebsd/
x ./boot/efi/efi/boot/
x ./boot/efi/efi/boot/bootxb4.efi
x ./boot/efi/efi/freebsd/loader.efi
.ar: Error exit delayed from previous errors.
i oot@:/mnt # efibootmgr -c -a -1 /mnt/boot/efi/efi/boot/bootx64.efi
false
. 0001
. 3 seconds
. 0@B7, POBl, 0BB2, PPB3, 0BBB4, DBBS, BOBB, BBB6
BootBBB7*
+BootBBB1x UEFI QEMU DVD-ROM (QMBBBB3
BootBBB2x UEFI PXEv4 (MAC:BC2411285984)
BootBBB3x UEFI PXEvbe (MAC:BC2411285984)
BootBBB4x UEFI HTTPv4 (MAC:BC2411285984)
BootBBB5* UEFI HTTPvE (MAC:BC2411285984)
BootBBBB* UiRpp
BootBBB6* EFI Internal Shell
ro0t@:/mnt

Here's a screenshot from an ARM VM from last semester, when we used cs470.local.

rify-peer -g -o - htt / 4/ F vtbd@pl,

Not Found
rify-peer -g -o - htt 4/ freebsd/vibdépl.

v Invalid argument

. This step is only for people with Intel CPUs and legacy BIOS FreeBSD VMs.

Let’s make the drive bootable by adding boot code to it.
gpart bootcode -b /boot/pmbr -p /boot/gptboot -i 1 da0

34

CS470Lab 6

36. Shut down your replica VM.

37.

38.

shutdown -p now

In either the Proxmox web Ul or UTM’s interface, make sure the optical disk ISO is disconnected from
the VM.

Start your new FreeBSD VM back up. It should boot up, be on the network, and you should be able to
SSH into it too without key warnings. For all intents and purposes, it’s the same machine. Mission
accomplished!!

People on Intel CPUs only: This one’s a web search exercise. Configure your FreeBSD VM to start up
when your Proxmox host does. Hint: it’s in the Proxmox web-based Ul. | know, not much of a hint.

Once you have your FreeBSD VM booted back up, open up your backup under /home/tmp with the
command ...

$ gunzip -c¢ /srv/nfs/freebsd/dalp2.dump.gz | restore ivf -

... and when you get a prompt, enter ? for help. Note that you have a small set of familiar commands
you can use here, inside restore, to interactively browse through files created by dump, and select just
the files you want to restore. You don’t need to restore anything here ... | just wanted you to see this
interactive mode.

I DO NOT DELETE YOUR BACKUPS ... WE WILL USE THEM FOR GRADING !l

part six: saving backup and replication artifacts for grading

That’s it ... you’ve done a backup, and a restore, a mock physical-to-virtual conversion, and gotten experience
with a data center hypervisor. If you have an Intel CPU, you’re also running a VM inside another VM. Pretty
cool. Go ahead, play around with the nested FreeBSD VM you just created. It works, everything works.

Also, from the pretty cool column, note what you did here. You backed up your lab 2 VM to a file server on
your lab 3 VM, and downloaded it from your lab 4 VM to create a replica inside your lab 6 VM. Your lab 1 VM
provided DNS, identity, and encryption for data security, of course. The reason we opted to use the FreeBSD
VM here, is because it and your Openindiana VMs were the only bystanders here.

We’ve built on top of each lab with each subsequent lab, and it’s all coming together now.

Please run the following commands on your FreeBSD clone to save artifacts for grading.

O P

df -k > /tmp/df.labé6.txt

df -h >> /tmp/df.lab6.txt

sudo gzip /restore/restore.out

sudo cp -p /restoresymtable /restore/restore.out.gz /tmp/df.labé6.txt /srv/nfs/freebsd

35

CS470Lab 6

Make sure all your lab 6 artifacts are readable for grading later on. On your Rocky Linux VM, run ...

$ sudo chmod 644 /srv/nfs/freebsd/*

When you're done playing with your FreeBSD replica, you can shut it down and power off your whole lab 6
VM, Proxmox and all. Don’t throw them away yet, though, just in case, but we won’t be using it. Proxmox
eats up too much RAM on top of our FreeBSD instance, so we'll go back to using your lab 2 VM to provide mail
service for our lab networks.

Windows users, please feel free to re-enable any features you disabled at the start of the lab; so long as you
have the artifacts above, you won’t need your Proxmox VM for grading later.

Please do, however, feel free to experiment if you have the RAM and space to do so!

</lab6>

36

