
 1

CS 470: Unix/Linux Sysadmin
Spring 2025 Lab 5b
the ghost of commercial Unix past: AIX

Things from the prior labs that are required to begin this lab:

• the DNS setup from lab 1 is extended here
Things in this lab that are on the critical path for upcoming labs:

• having this lab’s VM up and running is a requirement for grading lab 5b
• aside from the grading dependency, this lab can be worked out of order

We should start off by talking about IBM. Founded in 1911 (yes, really) as the Computing-Tabulating-
Recording Company (“CTR”), IBM (its name since 1924) was the original “big tech” company, a pioneer of
information technology since electricity was first standardized and the most primitive forms of IT were born …
all the way to the mainframe, and then the personal computer.

IBM has continually re-invented itself for over 100 years, riding the bloody edge of emerging technologies like
punch-card time keeping and tabulating systems, electronic scale and measurements, electric typewriters,
electronical and mechanical calculators, mainframes, minicomputers, supercomputers, and personal
computers. IBM invented hard disks (in 1956!), bar codes, magnetic stripe cards, and DRAM. It made its first
stored-program computer in 1952 with vacuum tubes for memory, and also in 1956, also made one of if not
the first, demonstrations of artificial intelligence with a program that played checkers and “learned” from its
experience.

Every single Windows PC and Intel Mac out there today is a descendant of the original IBM PC from way back
in 1981. To call the company a cornerstone in computing would be understatement, to say the least. IBM is a
unique company. IBM used to have a corporate song book. Like seemingly every other marquee technology
company of the last 50-plus years, IBM has its own variant of Unix, called AIX. A huge thanks to IBM’s
PowerSkills for hosting us for several years now, so that we can show off their boutique genetic AT&T-ish Unix
operating system, and get all our hands on it.

I was surprised, reading the Wikipedia article for IBM’s Jeopardy! champion AI, Watson, named after one of
the early company principals. Not only does it not run on AIX, it doesn’t even run on IBM’s wholly-owned
Linux (Red Hat). Strangely, Watson runs on SUSE Linux, another “enterprise” Linux based out of Germany.

https://en.wikipedia.org/wiki/IBM_Watson
https://en.wikipedia.org/wiki/SUSE_Linux

Watson does, however, run on IBM’s POWER line of CPUs, and lots of things still do run on AIX. AIX still has a
reputation for having fairly high-quality code and comparatively less security problems, though it does get
seen by a far more exclusive audience. AIX still has a big following in the financial and health care industries,
amongst others.

IBM’s Unix is kind of its own beast. Though AIX is derived directly from pure cane AT&T Unix, it’s always
incorporated a lot of BSD code and tendencies too, a lot of IBM’s own stuff, and even some stuff from Linux.
Try as I might, I couldn’t find the quote, but some used to be fond of saying something along the lines of: IBM
got its hands on Unix and “fixed” (or maybe just IBM-ized) it, and AIX was the output of that process.

Originally, AIX was designed for IBM’s line of RT workstations. RT stood for “RISC technology” when RISC CPUs

https://arstechnica.com/information-technology/2014/08/tripping-through-ibms-astonishingly-insane-1937-corporate-songbook/
https://en.wikipedia.org/wiki/IBM_Watson
https://en.wikipedia.org/wiki/SUSE_Linux

 2

(IBM’s ROMP line of CPUs in this case) were still the new kid on the block. AIX has since run on several
instruction sets and several more architectures than that, including as a “pro” option on early IBM PCs (Intel
x86), and on the ROMP, POWER/PowerPC, and IBM mainframe architectures.

POWER/PowerPC is a throughput monster family of CPUs that has at one time powered Apple Macintosh-
branded computers, Cisco routers and switches, Sony PlayStation, Nintendo, and Xbox game consoles, and the
aforementioned Watson. Since 1990, AIX has only run on IBM-branded POWER or PowerPC hardware.

Thus far, you’ve mostly used modernized distributions with forward-thinking, open-source software, and
modern shells with command line editing, and history-based substitutions. This isn’t me bashing AIX; version
7.3 is far more modern and accommodating than 7.2, but both are currently supported and we’re not after
creature comforts with this lab. There will be none of that here at the beginning, and whatever creature
comforts you have, you’ll be bringing with you … aside from getting familiar with another flavor of commercial
Unix, getting bash, sudo, and a third-party software package manager running to provide some modern-ish
tools is the primary mission of this lab. You’re in for a treat.

IMPORTANT: do not reboot or shut down your AIX instance. It’s in IBM’s cloud, and we don’t have access to
the power controls for each instance. If you reboot and it doesn’t come back up, we have to mail IBM to
turn it back on. If you shut it down, it will not come back up. Take a look after you log in: I’ve run chmod
0400 on /usr/sbin/shutdown and /usr/sbin/reboot to try to save you from shooting yourself in the
foot.

part one: get it

We don’t really have to get it this time … AIX only runs on Power/PowerPC, and this has already been done for
us. IBM’s educational cloud has given us each a VM (a logical partition, or “LPAR” in IBM’s parlance) running
AIX 7.2, and we just have to log in and explore.

These systems are meant as crash test dummies; don’t try to mess up your VM, but don’t be afraid of it,
either. When I first logged into my AIX system to develop this lab document in 2019, my AIX LPAR told me …

472525 unsuccessful login attempts since last login.

… this is why we typically don’t expose SSH services to the internet. This was the result of automated
software attacking this instance, trying to brute-force guess the root password. We typically hide SSH ports
behind firewalls and VPN services requiring multi-factor authentication. This year, IBM has gotten its
educational cloud with the times, and now requires us to connect to a VPN service to get around their firewall
before we connect to our AIX instances.

Go to, or fetch the file, at the URL http://slagheap.net/media/cs470/aix/YourRedID.txt ... replace “YourRedID”
with your numeric RedID number. Inside the file is the IP address and root password of your AIX instance for
this exercise, and your login for IBM’s remote access VPN service to its educational cloud.

You have two options for how you can connect to IBM’s cloud. You can either use the commercial Cisco VPN
client, or you can use openconnect, a compatible open-source VPN client, so we’re going to install them both.
If anything ever doesn’t work with openconnect, fall back on the Cisco-branded client.

http://slagheap.net/media/cs470/aix/YourRedID.txt

 CS 470 Lab 5b

 3

To install the graphical openconnect VPN client on Windows, just go to the project’s website and download
and install the software.

To install and use the command line openconnect VPN client on a Mac, first install homebrew, a way of
adding third-party packages to your Mac.

If you need to install homebrew, run this on a command line on your Mac, not inside a VM:
$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Then, to install openconnect …
$ brew update
$ brew install openconnect

Verify the installation with brew list.

To install the Cisco VPN client software, go to https://vpnisv.isv.ihost.com in a web browser then select the
group Anyconnect and log in with the VPN credentials from the file you just downloaded. If you have an issue
with this URL and are using a Chromium-based browser (Chrome/Edge/Brave/Opera/SRware Iron), use Safari
instead if you’re on a Mac, or grab Firefox if you’re on Windows.

If you already have the Cisco AnyConnect VPN or the Cisco Secure VPN client, it just should fire up and
establish a VPN connection once you successfully log in. Most of you don’t have it, though, I’m sure … and the
next page will welcome you to IBM, presumably IBM’s internal name for its new educational cloud. After you
click “continue” it’ll give you a link to download the VPN client for your host operating system. Click the link,
and when the download is done, run the installer.

!! NOTE: SDSU’s campus VPN (Palo Alto Global Protect) and IBM’s VPN (AnyConnect) will almost certainly
not work well together. VPN clients typically don’t work nicely together, as they all typically expect to be in
charge of the DNS resolver client and a system’s routing table. You should not expect for both VPN
connections to be up at once … but fortunately, you don’t need both VPN connections to be up at once,
either. When working on this lab, disconnect from the campus VPN.

After the first time connecting to download the Cisco VPN client, you’ll use this process every following time to
connect with the Cisco VPN client:

• Run the Cisco AnyConnect VPN client. Newer versions may call themselves “Cisco Secure Client.”
Don’t worry, it’s the same software. Those of you on Macs, look in the Applications folder. Those of
you on Windows, can find it by hitting the start menu button and typing “Cisco” to see it. In the text
entry box under “ready to connect,” specify the hostname vpnisv.isv.ihost.com …

• … as before, select the group “Anyconnect” if you’re offered a choice of groups, and the VPN username
and password provided in the file you fetched with your RedID. Click “accept” when welcomed to IBM.

• Once a connection is successfully established, the Cisco VPN client may minimize to the system tray on
Windows, or the menu bar on the Mac. You can find it there, if you seem unable to talk to your AIX

https://gui.openconnect-vpn.net/
https://vpnisv.isv.ihost.com/

 CS 470 Lab 5b

 4

instance.

• While connected, the VPN might erroneously set your host’s DNS server to 192.168.25.4, which is
unreachable from your host. You should know how to change it to something sensible, if you find you
can’t resolve internet sites after connecting.

Connecting with the Windows-based openconnect GUI is very similar to the Cisco client.

To connect on your host computer’s command line with openconnect:
$ sudo openconnect --user=psa-sdsu-vpn-user-X --authgroup=Anyconnect vpnisv.isv.ihost.com

openconnect will stay active in your host’s terminal window, and will not return a new prompt. If you connect
to IBM’s cloud this way, start a new terminal tab or window to work in … leave openconnect running in that
terminal window or tab, and end it in that terminal window or tab when you’re done with a control-c.

Regardless of how you connected to the VPN, now you’re able to use SSH to log in to your AIX instance. It
should ask you to reset your root password and log you out after you do. If it doesn’t prompt you to change
your password, change it now. You should know how to by now. Log back in with your new password
afterwards. If you can’t get in, please let me know ASAP.

Also, I’ve posted IBM’s course materials for their exhaustive training on AIX at
http://slagheap.net/media/cs470/aix/AN10_5.zip for your perusal.

part two: configure it

Since this AIX instance is out across the internet on IBM’s educational cloud, a lot of the configuration we
ordinarily do in each lab is infeasible on this one. It’ll be kind of difficult, and of limited value, to plug it into
the services we set up in the rest of the labs … our DNS, LDAP, e-mail, and NFS are all hidden behind your
laptop, acting as a network address translating (NATing) firewall.

Even if we could point our little cs470.internal domain from somewhere online, we’d need to pull a few
firewall tricks, maybe stand up another VPN, and use dynamic DNS to help this AIX instance find our VMware
private network to enable communication between them. We’re going to do a little bit of this in lab 7, when
we play with public cloud, but not today. This system is just going to be a one-off, so we can explore some
outlier operating systems.

1. Log back into your AIX instance if you’ve logged out of it. Since you’re logging in with a password
somebody else gave you, as root no less, please reset your password.

2. The uname tool is a very useful one; we introduced it way back in lab 1. In the 1970s, at the dawn of
Unix porting, they realized a single tool was needed on each system to be able to field answers about
the operating system, kernel, CPU architecture, and other things. On certain operating systems, uname
will show you build numbers for the kernel. On others, it will print machine hardware identifiers, like
the hex number in the uname output just below, from my AIX LPAR.

http://slagheap.net/media/cs470/aix/AN10_5.zip

 CS 470 Lab 5b

 5

uname -a
AIX sdsu-aix72-36 2 7 0001F99A7A00

On virtually all Unix-derived OSs, the -a switch will show you everything (all) that uname is able to
provide. In earlier releases of AIX, including earlier releases of AIX 7.2, it also used to do so … now it no
longer shows the hardware architecture. You have to use the -p switch to get uname to cough it up
now.

uname -p
powerpc

This is neither an Intel nor an ARM CPU here anymore, Toto … it’s not Kansas, either.

If you haven't already, try uname out on your other VMs.

3. A lot of you may noticed already, but we don’t have command line editing here, or history.

echo $SHELL
/usr/bin/ksh

How about a more modern, friendly shell?

which bash
no bash in /usr/bin /etc /usr/sbin /usr/ucb /usr/bin/X11 /sbin
/usr/java8_64/jre/bin /usr/java8_64/bin /opt/freeware/bin
which tcsh
no tcsh in /usr/bin /etc /usr/sbin /usr/ucb /usr/bin/X11 /sbin
/usr/java8_64/jre/bin /usr/java8_64/bin /opt/freeware/bin

Sooooo unhelpful. Let’s see what’s registered with the operating system.

cat /etc/shells
/bin/csh
/bin/ksh
/bin/psh
/bin/tsh
/bin/bsh
/usr/bin/csh
/usr/bin/ksh
/usr/bin/psh
/usr/bin/tsh
/usr/bin/bsh

bsh is apparently the original Bourne shell, from the manual, not the Bourne-again shell (bash), tsh is
the “trusted shell,” a security-enhanced version of the Korn shell (ksh), and psh doesn’t have a man
page. Nope, no modern shell! Also no sudo …

which sudo
no sudo in /usr/bin /etc /usr/sbin /usr/ucb /usr/bin/X11 /sbin
/usr/java8_64/jre/bin /usr/java8_64/bin /opt/freeware/bin

… sudo is so accepted, that even the canonical Solaris operating system from Oracle now includes it.
We’ll come back to this later, but like I said, we’re not in Kansas anymore or any parts familiar either.

 CS 470 Lab 5b

 6

We’re in an older, classic Unix that lacks a lot of the familiar creature comforts of modern Unix and
Linux.

4. Next, let’s create a regular user account so we’re not always running around as root, and let’s all use
the same username as our LDAP user here. We will not be using LDAP here, as there’s no way to have
this AIX instance phone home to our LDAP server, so we will not be creating a failsafe user account.

There’s an /etc/passwd file here on AIX …

ls -l /etc/*passwd*
-rw-r--r-- 1 root security 666 May 05 2022 /etc/passwd

… but not an /etc/shadow … I web searched and found this article … so rather than manually editing
new and unfamiliar files, I tried to find native commands for creating users under AIX but ran into an
older Unix problem right away, one that we haven’t had to deal with on the newer operating systems
we’ve used thus far in these labs …

man -k user
man: file /usr/dt/man/whatis not found
 Create the whatis database using the catman -w command.

… the whatis database is the database of one-line synopses of all the installed man pages that we
search with man -k, and most OSs include whatis databases out of the box nowadays, or just search
them on the fly … not AIX. Run catman -w to build the database. Running man -k user again
produced waaaay too much output, so I piped it through grep ^user …

man -k user | grep ^user
user(4) - Contains extendeduser attributes.
user(4) - Contains thelist of roles for each user.
useradd(1) - Creates a new user account.
userdel(1) - Removes a user account.
usermod(1) - Changes user attributes.
users(1) - Displays acompact list of the users currently logged on to the system.

… reading the man page for useradd, it says all group IDs used must be valid, so I decided to first make
my regular user account its own group (editing /etc/group with vi, of course) …

peter:!:1001:

… and then created the user account …

useradd -d /home/peter -g 1001 -u 1001 peter

… and then set the new account’s password.

passwd peter

Inquiring minds will use ls, like I did, and notice that though I asked useradd to create a home
directory with the -d option above, AIX’s useradd didn’t do it …

ls -l /home
total 0
drwxr-xr-x 2 guest usr 256 May 04 2022 guest

https://www.ibm.com/support/knowledgecenter/en/ssw_aix_72/security/passwords_etc_passwd_file.html

 CS 470 Lab 5b

 7

drwx------ 2 root system 256 May 05 2022 lost+found
drwxr-xr-x 2 203 system 256 May 05 2022 srvproxy

… so I made it myself manually …

mkdir /home/peter
chown peter:peter /home/peter
ls -ld /home/peter
drwxr-xr-x 2 peter peter 256 Nov 04 13:04 /home/peter

… and now we have a full, regular user account, but unfortunately, however, we’re going to need to
stay root for most of this lab because we don’t have sudo. Not yet, at least … so be careful!

5. Network time … first, I decided to look if it was running, and noted that AIX is an AT&T-derived Unix, so
ps historically prefers the AT&T-ish switches (-eaf) like Solaris does, but testing showed that AIX’s ps
command also works nicely with the BSD-descended switches (-aux) … and that ntpd wasn’t running.

ps -eaf | grep ntpd

Not quite sure how I found it initially in searching, else I’d share, but search I had to, and AIX uses the
token src to represent services and subsystems. Nice one, IBM!

As we saw in lab 1, virtually every other Unix OS uses src as an abbreviation for “source,” as in “source
code.” Linux and BSD both use /usr/src as the home of kernel and operating system source. From
the output of man -k src this appears to stand for “System Resource Controller” … sweet, another
new acronym. (In case I’ve failed to spell out my opinion here, acronyms are poor branding, and poor
branding is a primary problem in selling our field.)

Near the bottom of the output of man -k src I spotted this …

startsrc(1) - Starts a subsystem,a group of subsystems, or a subserver.

… and a short man page reading later (DO IT), this is the command I was looking for to start NTP …

startsrc -s xntpd
0513-059 The xntpd Subsystem has been started. Subsystem PID is 9175444.

… what you’re seeing here with 0513-059 is a very classic IBM-ish insistence on message numbers
here, which used to turn up much more often than it does now. This is the command we use to list
services …

lssrc -a | grep ntp
 xntpd tcpip 9175444 active

… finally, edit the file /etc/rc.tcpip and uncomment the line that starts ntpd at boot time.

6. We’re out across the internet on another private network here, and in order to send e-mail, we really
need to have a publicly available DNS name. If our system’s hostname doesn’t look up on the internet,
most e-mail servers online will discard e-mail coming from it.

 CS 470 Lab 5b

 8

For those of you not familiar with it, I recommend that you stand up a free account at FreeDNS
(http://freedns.afraid.org) and grab a hostname for your AIX instance. You can use FreeDNS later for
your home network installation, to get mail out of your VM network, or whatever you like.

To find out what our public IP address is, we’re going to use the service ipify.org. If you hit their main
page and click on “API usage,” you’ll see the API URL you can grab to get back a text response in a
terminal. Fortunately, AIX typically installs a bunch of freeware under /opt/freeware, including curl,
a versatile client for various network protocols, including HTTP/HTTPS, of course. Conveniently, there’s
a symlink to /opt/freeware/bin/curl in /usr/bin. Use curl and ipify.org to get the public-facing IP
address of your AIX instance’s network locale and register it with FreeDNS.

I grabbed myself the name aches.mooo.com as you can see below.

7. Now let’s set up internal DNS. We’re going to set up a hosts file entry and two records in internal
DNS, one to help us access our AIX instance over the VPN, and the other to help us find the public
lookup we just stood up at FreeDNS.

First, set up an entry for aix.cs470.internal to your hosts file on your host operating system, using
the private IP address of your AIX instance on IBM’s cloud … the IP address you use to SSH into it, NOT
the public IP. This way you can SSH into your AIX instance from your host computer by name.

Next, so that we can SSH into our AIX instances by name from our VM networks, add a DNS address (A)
record for aix.cs470.internal in the zone file for cs470.internal with the private address supplied by IBM
for your AIX instance.

Also set up a DNS alias (a CNAME record) for aix-public.cs470.internal in the zone file for
cs470.internal on your OpenBSD VM, pointing to the public DNS name you used at FreeDNS. What a
symbolic link is to the file namespace, a CNAME record is to DNS. When a DNS client (resolver) does a
lookup on the name aix-public.cs470.internal inside your VM network, the CNAME tells the client that
it has to look up the DNS name you set up in FreeDNS, and it goes there for the answer.

Even if we wanted to, we can’t use a CNAME in a hosts file. When you get the setup correct, it should

http://freedns.afraid.org/
https://www.ipify.org/

 CS 470 Lab 5b

 9

look like this …

$ host aix.cs470.internal
aix.cs470.internal has address 172.20.14.233
$ host aix-public.cs470.internal
aix-public.cs470.internal is an alias for aches.mooo.com.
aches.mooo.com has address 131.239.211.201

I know we haven’t done a CNAME before … go find out how! It’s not rocket science, it’s just a web
search.

8. Now we’re ready for e-mail. If you look in /etc/mail you’ll see that AIX comes with sendmail.

First, edit /etc/mail/sendmail.cf and uncomment the line with Dj and add in your hostname, so
that it looks like this …

Djaches.mooo.com

… with your hostname from FreeDNS or another DNS service, of course, instead of mine. AIX doesn’t
have a pkill or a killall command for sending signals to processes based upon the name of the
command they were started with … we use this command to ask sendmail to re-check its
configuration:

refresh -s sendmail
0513-095 The request for subsystem refresh was completed successfully.

Add a line for root in /etc/mail/aliases – and note that you want to use a real, publicly-routable e-
mail address here. Use your SDSUid address, not your @cs470.internal e-mail – and run newaliases.

newaliases
WARNING: Group writable directory /var/spool
WARNING: Group writable directory /var/spool/mqueue
/etc/mail/aliases: 26 aliases, longest 17 bytes, 300 bytes total

Finally, let’s change the hostname of the system to match the name you configured in FreeDNS …

smitty hostname

… and here, you’ll get your first introduction to smit, the single most distinctive tool in IBM’s Unix and
the biggest result of IBM “fixing” what they licensed from AT&T. Anybody who has used Hewlett
Packard’s HP/UX users will notice a similarity to the sam tool from that operating system. At the menu,
choose to set the hostname, and set it to the name you registered above in FreeDNS, and hit return to
perform the action. It should say inet0 changed. Then hit F10 to exit smit. Going out to the
command line, and running the command hostname will confirm that it worked.

hostname
aches.mooo.com

Time to test mail; of course, replace my SDSUid e-mail address with yours …

 CS 470 Lab 5b

 10

echo "test" | mail -s test pbartoli@sdsu.edu

Check your spam bin before you conclude that it didn’t arrive.

To make sure you get logs from the mail subsystem, you can add this line in /etc/syslog.conf …

mail.debug /var/log/mail/maillog rotate size 200k files 4

And:
mkdir /var/log/mail
touch /var/log/mail/maillog
refresh -s syslogd

part three: disk management

In this section of the labs, we’re going to be playing with AIX’s volume management capabilities, the very same
sort of technology I asked you to steer clear of (LVM) in both the Linux labs. Volume management abstracts
filesystems away from disks, so that filesystems can span multiple physical disks, among other storage
strategies.

Like I said back then, on standalone VMs on a desktop hypervisor, volume management is an unnecessary
layer of abstraction. In a VM in a cloud, it may well not be unnecessary … it might be useful for making a
filesystem span multiple backing stores for failover purposes. In this part of the lab, we’ll explore AIX’s volume
management capabilities by shrinking and growing filesystems, and mirroring our root filesystem and volume
group across multiple disk devices.

9. Disk management on AIX is a little different. df on AIX doesn’t have a -h switch; I find it gets the most
human-readable output with the -m switch …

df -m
Filesystem MB blocks Free %Used Iused %Iused Mounted on
/dev/hd4 9312.00 9263.09 1% 2962 1% /
/dev/hd2 2336.00 553.53 77% 37215 22% /usr
/dev/hd9var 1216.00 1162.61 5% 989 1% /var
/dev/hd3 1024.00 1020.77 1% 35 1% /tmp
/dev/hd1 21504.00 21500.36 1% 8 1% /home
/dev/hd11admin 128.00 127.63 1% 5 1% /admin
/proc - - - - - /proc
/dev/hd10opt 5120.00 4783.96 7% 11312 2% /opt
/dev/livedump 256.00 255.64 1% 4 1% /var/adm/ras/livedump
/dev/repo00 7904.00 85.99 99% 2151 10% /usr/sys/inst.images
/ahafs - - - 35 1% /aha

… as you can see, m is for megabytes.

These AIX systems are VMs (or LPARs), and often, not all available disk space is allocated during
installation. If you look at the file /var/adm/ras/bosinst.data (I’m not sure what ras is, but bos is
short for “base operating system,” because acronyms), you’ll find a line SIZE_MB that’ll tell you the size
of the disk in your “LPAR.”

 CS 470 Lab 5b

 11

grep -i size /var/adm/ras/bosinst.data
 SIZE_MB = 20480

So this LPAR had about 20 GB (or is it GiB?) of space at some point in time, but as we saw in the output
of df, it’s using much more space than 20 GB. Our LPARs were probably cloned outside the regular
installation process.

Filesystems on AIX are provisioned out of space in “volume groups.” These volume groups are like the
LVM technology we avoided as an unnecessary abstraction on Linux. AIX, however, requires a few
different partitions by default, so it is not an unnecessary abstraction here, and we’re going to briefly
explore what can be done with volume groups.

You can list a system’s volume groups with the lsvg utility.

lsvg
rootvg

The answer is the default for AIX systems; the root volume group typically contains the bootable
operating system. On most systems, there’s only one volume group.

To get more information about the root volume group, supply it as an argument to lsvg.

lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 00fa00d600004c00000001809352fa44
VG STATE: active PP SIZE: 32 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 1599 (51168 megabytes)
MAX LVs: 256 FREE PPs: 23 (736 megabytes)
LVs: 13 USED PPs: 1576 (50432 megabytes)
OPEN LVs: 12 QUORUM: 2 (Enabled)
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per VG: 32512
MAX PPs per PV: 2032 MAX PVs: 16
LTG size (Dynamic): 256 kilobyte(s) AUTO SYNC: no
HOT SPARE: no BB POLICY: relocatable
PV RESTRICTION: none INFINITE RETRY: no
DISK BLOCK SIZE: 512 CRITICAL VG: no
FS SYNC OPTION: no CRITICAL PVs: no
ENCRYPTION: no

So there are about 50 GB of space available (TOTAL PPs) to my LPAR, and most of that is allocated
(USED PPs).

We have plenty of space on our LPARs, so let’s shrink its /home partition to 5 GB.

chfs -a size=5G /home
[====================] 100%
Filesystem size changed to 10485760

Check out the output of df again to make sure it worked. With volume groups, space can be
dynamically reallocated between partitions as required.

 CS 470 Lab 5b

 12

10. Each of our AIX instances was configured with multiple virtual hard disks attached …

ls -l /dev/hdisk*
brw------- 1 root system 13, 0 Sep 12 2023 /dev/hdisk0
brw------- 1 root system 13, 2 May 05 2022 /dev/hdisk1

… though only one is currently in use by the root volume group.

lspv
hdisk0 00fa00d6b56a99bb rootvg active
hdisk1 none None

Let’s fix this by adding the other disk to the root volume group …

extendvg -f rootvg hdisk1
0516-1254 extendvg: Changing the PVID in the ODM.

… and then configure the root volume group to mirror to both disks.

mirrorvg -S rootvg hdisk1
0516-1804 chvg: The quorum change takes effect immediately.
0516-1126 mirrorvg: rootvg successfully mirrored, user should perform
 bosboot of system to initialize boot records. Then, user must modify
 bootlist to include: hdisk1 hdisk0.

Since we’re not rebooting our AIX instances here in this lab, we’re not going to modify the boot
records, but in real life, to get true failover of our root volume group including starting the computer
this would have to be done.

As you can see, the contents of the root volume group are spread out across the two disks that
constitute it …

lspv -l hdisk0
hdisk0:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
hd8 1 1 01..00..00..00..00 N/A
hd6 16 16 16..00..00..00..00 N/A
hd5 2 2 02..00..00..00..00 N/A
repo00 247 247 00..247..00..00..00 /usr/sys/inst.images
lg_dumplv 32 32 32..00..00..00..00 N/A
livedump 8 8 08..00..00..00..00 /var/adm/ras/livedump
hd11admin 4 4 04..00..00..00..00 /admin
hd3 32 32 04..28..00..00..00 /tmp
hd9var 38 38 01..06..31..00..00 /var
hd2 73 73 49..24..00..00..00 /usr
hd4 291 291 03..00..288..00..00 /
hd10opt 160 160 01..15..00..144..00 /opt
hd1 160 160 01..00..00..159..00 /home
lspv -l hdisk1
hdisk1:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
hd8 1 1 00..00..01..00..00 N/A
hd6 16 16 00..16..00..00..00 N/A
hd5 2 2 02..00..00..00..00 N/A
repo00 247 247 247..00..00..00..00 /usr/sys/inst.images
livedump 8 8 08..00..00..00..00 /var/adm/ras/livedump
hd11admin 4 4 04..00..00..00..00 /admin
hd3 32 32 00..32..00..00..00 /tmp

 CS 470 Lab 5b

 13

hd9var 38 38 00..38..00..00..00 /var
hd2 73 73 00..73..00..00..00 /usr
hd4 291 291 00..00..291..00..00 /
hd10opt 160 160 00..00..27..133..00 /opt
hd1 160 160 00..160..00..00..00 /home

… although it is not instantaneous! A few gigs of data still have to be copied to the clone drive.

Our root volume group now shows it has more space.

lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 00fa00d600004c00000001809352fa44
VG STATE: active PP SIZE: 32 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 3198 (102336 megabytes)
MAX LVs: 256 FREE PPs: 1102 (35264 megabytes)
LVs: 13 USED PPs: 2096 (67072 megabytes)
OPEN LVs: 12 QUORUM: 1 (Disabled)
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 1 STALE PPs: 309
ACTIVE PVs: 2 AUTO ON: yes
MAX PPs per VG: 32512
MAX PPs per PV: 2032 MAX PVs: 16
LTG size (Dynamic): 256 kilobyte(s) AUTO SYNC: no
HOT SPARE: no BB POLICY: relocatable
PV RESTRICTION: none INFINITE RETRY: no
DISK BLOCK SIZE: 512 CRITICAL VG: no
FS SYNC OPTION: no CRITICAL PVs: no
ENCRYPTION: no

Good job; aside from the small piece we didn’t do for booting, you’ve just set up fault-tolerance for
your root volume group.

part four: third-party packages

Just like on other operating systems, we want a package manager for installing third party software.
Fortunately, IBM knows this, and they’ve put up a site to actively support the installation of free and open-
source software on AIX. It’s called the “AIX toolbox” … a lot of OSs have their own third-party value-add
systems for adding free software. IBM is a big fan of Linux – remember, they own Red Hat – and AIX is no
exception. The “AIX Toolbox” is really just Red Hat Linux’s package manager (yum or dnf), ported to AIX, with
RPMs of AIX binaries, so you can install IBM-curated ports of common freeware.

https://www.ibm.com/support/pages/aix-toolbox-linux-applications-overview

Our immediate goal here will be to make AIX more comfortable with a modern shell (bash). After that, we
want to bring our AIX instance up to parity with our other systems, and get sudo, tcsh, gnupg, wget, and gcc
running.

Another option here would be NetBSD’s pkgsrc system. NetBSD, again, is the ancestor to OpenBSD, and
pkgsrc is NetBSD’s name for its third party software build system, the ancestor of the “ports tree” on FreeBSD
and OpenBSD. See https://wiki.netbsd.org/pkgsrc/how_to_use_pkgsrc_on_aix/ … for some reason, the
NetBSD project briefly ported their pkgsrc tree to AIX. No idea why here. We’re not going to use it.

https://www.ibm.com/support/pages/aix-toolbox-linux-applications-overview
https://wiki.netbsd.org/pkgsrc/how_to_use_pkgsrc_on_aix/

 CS 470 Lab 5b

 14

11. We used to install yum for AIX from the internet using the directions here …

https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/README.txt

… and I recommend you skim through it to see what we used to go through, but yum is no longer
updated, so dnf it is.

Make a directory /tmp/dnf and cd to it to download and install it.

Remember curl from a few steps ago? Use it again, with -O to write output to a file, to download the
tarball of the latest version of the dnf bundle for AIX 7.2 from the ezinstall/ppc folder in the
README.txt link above, and extract it with tar.

If you get an SSL cert hostname error when running curl with the dnf bundle, try replacing the
“ftp.software” in the URL with “www3.software” … they’re the same repository, but the certificate
provided by “ftp.software.ibm.com,” which you can see by navigating to it in a web browser and
clicking that lock icon in the URL bar, has its common name set to “www3.software.ibm.com” for some
reason. The mismatch between the fully-qualified domain name and the cert’s common name can –
and should – cause HTTP clients like curl or Firefox to freak out during the TLS handshake.

One of the files that you unpacked is called install_dnf.sh … run it without any switches to see its
options. We don’t care about having a yum command, so this seems correct …

./install_dnf.sh -d

Note that AIX is using rpm, the base Red Hat Package Manager, and that it is part of the base AIX
installation.

which rpm
/usr/bin/rpm

If you don’t get this error, you can skip ahead to the next step …

https://public.dhe.ibm.com/aix/freeSoftware/aixtoolbox/README.txt

 CS 470 Lab 5b

 15

Please install openssl 1.1.x and higher version.
You can download and install latest openssl from AIX web download site
https://www-01.ibm.com/marketing/iwm/platform/mrs/assets?source=aixbp

… if you did, make a directory /tmp/openssl and cd to it.

I’m hosting the package here; use urlgrabber again …

http://slagheap.net/media/cs470/aix/openssl-1.1.1.2000.tar.Z

… and the README for the package here:

http://slagheap.net/media/cs470/aix/Readme-1.1.1.2000.txt

As we covered in lecture just recently, archives with the .Z extension use compress and uncompress,
the very oldest of Unix compression tools. Once you have that figured out, you should have a
subdirectory with openssl.base, openssl.license, and openssl.man.en_US in it. cd there, and
then to install it, we’re back to running SMIT.

smitty install_all .

In the field to enter the directory, enter . for the current directory.

In the field for software to install, enter openssl.base.

Change the value for accepting licenses to yes, then proceed.

Finally, this command updates the backing package databases.

updtvpkg

The command from the prior step to install dnf should now work.

dnf installed successfully.
Please run 'dnf update' to update packages to the latest level.

Please note, RPM packages are downloaded in dnf cache /var/cache/dnf.
RPM packages install files go under the path /opt.
Hence it is recommended to always keep at least 512MB of free space in /var & /opt
to avoid any download and installation/update failures.

Make sure you have the free space under /var and /opt that it recommends … we’re about to use it.

12. dnf is now installed at /opt/freeware/bin/dnf … take a look at the contents of /opt/freeware and
/opt/freeware/bin at a minimum … /opt/freeware is the file tree used for things installed by this
build of dnf on AIX.

http://slagheap.net/media/cs470/aix/openssl-1.1.1.2000.tar.Z
http://slagheap.net/media/cs470/aix/Readme-1.1.1.2000.txt

 CS 470 Lab 5b

 16

Note how /opt/freeware/bin contains both 32- and 64-bit versions of selected utilities.

ls -l /opt/freeware/bin/clear*
lrwxrwxrwx 1 root system 8 Sep 13 2023 /opt/freeware/bin/clear -> clear_64
-rwxr-xr-x 1 root system 114632 Jun 08 2023 /opt/freeware/bin/clear_32
-rwxr-xr-x 1 root system 120609 Jun 08 2023 /opt/freeware/bin/clear_64
file /opt/freeware/bin/clear*
/opt/freeware/bin/clear: 64-bit XCOFF executable or object module
/opt/freeware/bin/clear_32: executable (RISC System/6000) or object module
/opt/freeware/bin/clear_64: 64-bit XCOFF executable or object module

The RS/6000 was IBM’s first line of PowerPC-based systems using 32-bit PowerPC-based CPUs. IBM
hasn’t sold a 32-bit CPU since before year 2000, so it’s unclear to me why 32-bit binaries are being
installed here.

Also examine the file /opt/freeware/etc/dnf/dnf.conf … this is the main dnf configuration file, and
IBM has placed all its repositories directly into this file.

Add /opt/freeware/bin to your PATH if it isn’t already there.

Since we don’t have to install it, update the dnf databases from the repositories, and invite it to
update its core packages.

dnf -y update

You should see the familiar dance of dnf reaching out to repositories (at IBM this time), updating its list
of packages, resolving dependencies for packages it intends to install, and finally, updating packages
already installed along with the package manager. For me, this included the installation of bash.

If you see warnings about failing to remove older copies of bash, you can ignore them. If you see
errors about not being able to install the absolute best update candidate for a package, you may pass a
certain dnf flag in order to relax that requirement.

13. I’ll save you some pain; even though the installation of bash has added it to /etc/shells, chsh
(change shell) still doesn’t honor it as a valid shell. BE VERY CAREFUL as you manually edit
/etc/passwd and change your non-root user shell manually to /opt/freeware/bin/bash.

14. Now that we have a real shell installed, let’s install sudo, so that we can finally stop running around as
root, and start using our mortal user account.

dnf -y install sudo

Edit /etc/sudoers and allow the wheel group to run things as root, if they provide a password.

Then, edit /etc/group and create a group called wheel with any GID of your choice, and add your non-
root user to that group.

15. Log out of the root account, log back in as your regular user.

https://en.wikipedia.org/wiki/IBM_RS/6000

 CS 470 Lab 5b

 17

Add /opt/freeware/bin to your path for your regular user now too.

Create a personal .ssh directory with the appropriate owner-only permissions in your non-root user
account’s home directory on AIX. Copy your SSH public key into it as the file authorized_keys, as
always, and test that SSH key-based authentication works.

16. Finally, let’s install some more packages, and call it a lab.

$ sudo dnf install gcc tcsh wget

17. Later, when we grade this lab, we’re going to grade it via your lab 5 VM. Go on your lab 5 Solaris VM

and install openconnect.

$ sudo pkg install openconnect

Note that we gave you syntax for using openconnect at the top of this lab. If you’re on campus when
you’re trying to grade your VMs at the end of the class, you won’t be able to use both the campus VPN
to fix DNS and the IBM VPN for AIX at the same time, on the same system.

Whether or not you’re on campus or using the campus VPN, disconnect the IBM VPN on your host
system and connect it from your lab 5 VM with openconnect. Make sure you can SSH into your AIX
instance directly from your Solaris VM.

part five: updates

!! IMPORTANT NOTE: THE REST HERE IS JUST FOR YOUR READING PLEASURE. IBM removed the upgrade
media from their educational cloud, sadly, and this will not work, but I wanted you to see what it looks like.
Screenshots and version references in this section are from 2019, when they last had upgrade media available
online, and we were using AIX 7.2.

Updates on AIX are generally done with one of two commands: instfix, which is typically for small patches,
and smit, which is used for everything in AIX.

oslevel -s
7200-00-02-1614

The command above shows we’re running AIX 7.2, technology level 0 (no major update releases since the
original release of AIX 7.2), service pack 2, from 2016 week 14. We don’t, at least that I’m aware of, have any
hotfix repositories made available to us to use with instfix, but we can use smit to update to the most
recent “technology level” of AIX 7.2, AIX 7.2 TL 3, or 7200-03.

smit suma

Select “Download Updates Now (Easy),” then select “Download Maintenance Level or Technology Level.”

 CS 470 Lab 5b

 18

On the next screen, enter 7200-03 and hit return. You’ll see your session appear to drop out of smit – smit
is often not very terminal-aware or SSH-friendly, I’m not sure which yet – and start showing output of
downloading packages.

When it’s finished (it’ll take a while), you’ll be back in smit again. Hit F10 to exit out to a shell.

cd /usr/sys/inst.images/installp/ppc
inutoc
ls -l .toc
-rw-r--r-- 1 root system 1120999 Aug 21 05:02 .toc

Then back into smit to run the update.

smit update_all

In the first screen that pops up, provide /usr/sys/inst.images/installp/ppc as the directory, then you
should see this screen after hitting return:

 CS 470 Lab 5b

 19

Use the arrow keys to go down to “accept new license agreements?” and hit space to change the value here.
Hit tab, per the on-screen directions, to change the value to “yes.”

Then hit return twice to start the update.

After that is done and you hit F10 to exit smit, the upgrade is finished, and so are we.

oslevel -s
7200-03-01-1838

https://www.ibm.com/developerworks/aix/library/au-aixservicepacks/index.html

https://www.ibm.com/developerworks/aix/library/au-aixservicepacks/index.html

