
 1

CS 470: Unix/Linux Sysadmin
Spring 2025 Lab 5
the ghost of commercial Unix past: Solaris, as told by OpenIndiana
centralized logging and configuration automation with Ansible

Things from prior labs that are required to begin this lab:

• labs 1-4: all prior VMs are required for the Ansible portion of this lab
• lab 3: Rocky Linux up, online, and sharing files via NFS

Things in this lab that are on the critical path for upcoming labs:
• having this lab’s VM up and running is a requirement for grading lab 5b
• aside from the grading dependency, this lab can be worked out of order

co-authoring and editing credits:

• 2020 TA Obada Alagha, who came back in 2021 to write the first version of the Ansible lab
• 2023 TA Enrrique Torres, for updates to Ansible in 2023 and adding expect
• 2025 TA Max Carrillo, for adding in pipx and Python virtual environments

Labs 5 and 5b, collectively, were originally for completeness and for historical purposes. We’ve now built labs
around two descendants of Berkeley Unix and the two most popular families of Linux distributions. Now
we’re going to cover two of the few remaining commercial operating systems that come from true, genetic
AT&T Unix: Oracle’s Solaris, and IBM’s AIX in lab 5b, because they’re still out there. Solaris is a dying operating
system, but there is still a large installed base out there, and you are still likely to run into it in the field. AIX is
a boutique operating system, with strong installed bases in health care, finance, and it’s still quite alive and
well.

There are a few more operating systems with genetic AT&T Unix that still survive, but only three are still
actively developed:

• Hewlett Packard’s HP-UX:

Hewlett Packard Enterprise appears to be getting bored here. Very much like we saw with a dying
Silicon Graphics and its formerly ground-breaking Unix, IRIX, HP-UX has been stuck on version 11i v3
since 2007, and updates are now released in bundles on an annual basis. As of the 2021 update to HP-
UX, the operating system is now "intended for use on HPE Integrity servers, not on HPE 9000 PA-RISC
systems," HP's now-terminated line of home-grown workstations with HP’s own RISC CPU architecture.

The Integrity line of servers has included both those HP-grown PA-RISC CPUs, which have not been sold
since 2008 or supported since 2013, and the Itanium processor, jointly developed with and
manufactured by Intel. However, Intel doesn’t make or sell them anymore, as of the summer of 2021.
Another year, another CPU instruction set bites the dust!

Accordingly, HPE does not have a roadmap for HP-UX development past 2025, and seems to plan to
end support for the operating system in 2028.

• formerly Sun, now Oracle, Solaris:

https://www.hpe.com/us/en/servers/hp-ux.html

2

This is the only one of these three genetic AT&T OSs that ever had a significant port to commodity PC
hardware. It still supports both PC hardware and some older SPARC-based workstations, but Solaris
was clearly developed with different hardware in mind, especially Sun’s – now Oracle’s – line of SPARC-
based data center big hardware solutions for data mega-warehouses, not really for workstations or for
PC Unix. This is what remains of the Unix shop that built Java, RPC, NFS, NIS, and co-authored System
V Release 4 with AT&T.

Solaris' development team at Oracle has been gutted by layoffs, and it laid off virtually all of its SPARC
CPU and hardware platform design team too, in the fall of 2017. The SPARC CPU intellectual property
has been placed in the public domain. Oracle still has paths defined for Solaris and SPARC hardware,
but this product is clearly winding down. Its death hasn't been officially announced, but the writing is
on the wall. Oracle has stated they’ll keep supporting Solaris 11, the current version, through 2034.

Sun and Solaris were once so popular that there was a small but vibrant market of third-party vendors
making SPARC-based hardware, even a line of SPARC-based laptops made by a small third-party
hardware partner of Sun (see http://www.computinghistory.org.uk/det/32324/Tadpole-SPARCbook-
3/). Only Fujitsu remains, but they have been making SPARC-based systems running Solaris for over 20
years, and they too have now signaled that they intend to stop building on the platform, with support
for SPARC (not necessarily Solaris) ending in 2034. However, Solaris is all but dead; we’ve been stuck
on Solaris version 11.4 since 2018. Again, the proverbial writing is on the wall.

https://www.fujitsu.com/global/products/computing/servers/unix/sparc/key-reports/roadmap/index.html

Silicon Valley is ever-innovative. “Sparc” already means something else to Silicon Valley, and you can't
write life any funnier than it just happens sometimes. See https://sparc.co/ …

• IBM’s AIX:

IBM released AIX 7.3 in December 2021, and AIX is still actively developed and updated.

Though it once had stints running on IBM’s mainframes, minicomputers, workstations, and very briefly
ran on early IBM PCs, it now primarily runs on IBM's POWER architecture. POWER descends from the
PowerPC line of CPUs, long ago jointly developed with Apple and Motorola. IBM hasn't sold any
PowerPC or POWER-based workstations since 2009, but its server hardware line still has a strong
following in a few market segments (https://www.ibm.com/it-infrastructure/power), and I'm sure y'all
have heard of the Jeopardy-playing Watson software.

Of these three operating systems, AIX is the only one with a real roadmap; there are plans for AIX
through 2035.

These are the last remnants of the workstation era. Each of these companies once had both a vibrant
workstation and server business, each on their own home-grown CPU architecture. HP has long since
completely gotten out of the CPU business and has now had the carpet pulled out from underneath them by
Intel. Sun appears to be on the way out of the CPU business too. All three have gotten out of the Unix
workstation business, arguably except for when HP sells consumer or business PCs with Linux installed.

https://www.oracle.com/servers/sparc/
https://www.oracle.com/servers/sparc/
http://www.computinghistory.org.uk/det/32324/Tadpole-SPARCbook-3/
http://www.computinghistory.org.uk/det/32324/Tadpole-SPARCbook-3/
https://www.fujitsu.com/global/products/computing/servers/unix/sparc/key-reports/roadmap/index.html
https://sparc.co/
https://www.ibm.com/it-infrastructure/power

3

As discussed in the history section of the first lecture, Bell Labs spun out Unix System Labs, then sold it to
Novell. Novell kept ownership of a lot of the intellectual property to the original AT&T Unix source tree, but
sold an exclusive license to sell it and continue its development to the Santa Cruz Operation, also known as
SCO. SCO used to have a great Unix-on-PC business with a strong presence in retail, built on top of what was
formerly Microsoft's Unix, Xenix. As Linux began to eat away at its market, SCO was sold to Caldera, which
later renamed itself "The SCO Group" before suing IBM, still a licensee of AT&T Unix, over Linux, alleging that
IBM violated the Unix copyrights by putting Unix code into the Linux kernel.

It was a long road, with the oddest twist of an ending. The court and the rest of us didn’t discover until several
painful years of the suit had passed, that Novell had never given up the intellectual property rights. Once the
court was presented with the contract between Novell and SCO, SCO’s case for copyright infringement rapidly
disintegrated from a lack of standing to file the suit in the first place. Once it became clear SCO was going to
lose, it sold its Unix business to UnXis, which became Xinuos. SCO remained alive to continue the suit against
IBM, for loss of business.

Through all this, their OpenServer and UnixWare operating systems have only seen minor updates with no
version number increases in almost 20 years. The current versions of each, UnixWare was released in 1998,
and OpenServer 6 was released in 2005. A newer major version release of OpenServer, version 10, is really an
unrelated product based on FreeBSD ... a candid admission that development wasn't happening on the old
Unix codebase ... and now that this product has failed to find market share, Xinuos has also recently decided
to sue IBM over Linux.

https://arstechnica.com/gadgets/2021/04/xinuos-finishes-picking-up-scos-mantle-by-suing-red-hat-and-ibm/

As often in life, you can't write it any funnier than it just happens sometimes. Many suspected that Microsoft
was pulling the strings and providing the funding behind SCO's lawsuit, as the first entity called SCO was once
a Microsoft subsidiary, there were lots of ties there, and Microsoft stood to gain a lot if Linux was found to be
in violation of copyrights and lost some footing. Microsoft was also vehemently and vocally anti-Linux at the
time. Who stands to gain the most in this suit is unclear. FreeBSD was named as the victim of IBM’s alleged
misdeeds this time, as it provides the underpinnings of both the newest version of Xinuos' OpenServer ... and
also the underpinnings of the last and biggest commercial Unix, macOS.

Apple’s macOS and its derivatives that run on familiar watches, phones, tablets, and set-top streaming devices
are certified as Unix™ but are actually based on Carnegie-Mellon's “Mach” kernel and Berkeley Unix, not AT&T
Unix. According to the BSD/AT&T settlement, modern BSDs definitely contain no actual AT&T code, so macOS
doesn't contain any unless it came from open-sourced versions of … Solaris. Yes, the use case exists! I was
validating my thinking as I wrote this, and funny how one web search and a link for macOS Catalina’s source
tree was able to validate my thinking …

https://opensource.apple.com/source/dtrace/dtrace-338.40.5/FileOrigins.auto.html

… Apple once flirted with making ZFS (from Solaris) its new filesystem in the early days of Mac OS X. Instead, it
ended up making its own journaling and snapshotting filesystem with plenty of design cues from ZFS, and also
put some of Solaris’ kernel tracing tools into macOS.

Running macOS, however, requires either a Mac or a violation of Apple’s license agreement, so covering the
Mac in this class was never a feasible option. There are, however, numerous write-ups online to tell you how

https://arstechnica.com/gadgets/2021/04/xinuos-finishes-picking-up-scos-mantle-by-suing-red-hat-and-ibm/
https://opensource.apple.com/source/dtrace/dtrace-338.40.5/FileOrigins.auto.html

4

to install macOS inside VMware. I’m not suggesting you do – just pointing out that they exist – if you were to
go find them and felt like experimenting with macOS before it becomes an ARM-only operating system.

As of 2020, 32-bit HP-UX versions from HP’s former line of PA-RISC CPUs can be run inside QEMU
(www.qemu.org) with full graphics and network support. Within the last couple years, AIX (from IBM’s
PowerPC CPUs) has also been able to run on QEMU. Solaris, both the SPARC and Intel CPU variants, have been
able to run inside QEMU for over a decade … but the Intel variant runs well inside VMware, so we'll put it
there. I only offer up QEMU and these other OSs here for history's sake, and in case you’d like to discover
more on your own later. You can find loads of abandonware operating systems (including older versions of
macOS you can try if you want) at the following URL:

https://winworldpc.com/library/operating-systems

Back to Solaris. Again, Solaris is the product of the former Sun Microsystems, once the most powerful and
seemingly invincible of Unix workstation companies. For many years, Solaris only ran acceptably on Sun’s own
hardware, and like many data center operating systems, its market was continually eroded by the increasing
power and far lower price point of Linux running on commodity PC-based hardware. This trend forced Sun to
finally get serious about making Solaris run well on PC hardware. Sun even began selling PC-based servers and
workstations, and at one point, re-released Solaris under an open-source license as OpenSolaris, trying to pick
up some of the open source community’s steam. Unfortunately, neither of these initiatives held fate at bay.
Sun’s carcass was purchased by Oracle, largely for the rights to Java, and the desire to sue Google over not
paying anything for using Java in Android. Oracle promptly made Solaris closed-source again, and even worse:
it started charging for patches, essentially forcing you to pay to keep Solaris running, or to keep it safe.

However, the proverbial genie was out of the bottle. The community forked the last available OpenSolaris
kernel as illumos, and today, illumos is to the OpenSolaris-based operating systems as Linux is to all the Linux-
based operating systems … just a kernel and the toolchain around it. OpenSolaris was referred to as “Project
Indiana” inside Sun, so when they forked the last available version of it to keep a public descendant alive, it
became OpenIndiana. OpenIndiana is now the viewed as the reference distribution for the illumos kernel.

When compared with the Linux and BSD communities, there isn’t a big open-source Solaris derivative
community, but there are a couple companies that have made some cool and viable products with it (notably
Nexenta’s line of enterprise storage products, www.nexenta.com), and there is at least one good open-source
distribution built around illumos: OpenIndiana. We’re going to use OpenIndiana to avoid all of you having to
sign up for accounts with Oracle for virtual machines that we won’t be able to patch or maintain.

And this is only a small part of Solaris’ long history! It superseded a far more loved BSD-based operating
system, called SunOS, and suffered from multiple version numbers and multiple brand names for most of its
life. You will still see Solaris and its derivatives advertise their guts as “SunOS,” to this day. Even the
OpenIndiana distribution we’re about to install does too, twice removed from the old Sun Microsystems.

$ uname -a
SunOS openindiana 5.11 illumos-1edba515a3 i86pc i386 i86pc

I recommend light reading of https://en.wikipedia.org/wiki/Solaris_(operating_system) … especially the
version history section. If you’d like to try the official Solaris operating system, please go for it … but you’ll be
graded on OpenIndiana. Oracle Solaris downloads can be found here …

http://www.qemu.org/
https://winworldpc.com/library/operating-systems
http://www.nexenta.com/
https://en.wikipedia.org/wiki/SunOS
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Oracle_Solaris#Version_history

5

https://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html

In this lab, not only are we going to explore more canonical AT&T-ish Unix, but we’re going to go through the
pain of resolving user ID conflicts and collisions. As all our systems subscribe to NFS (except OpenBSD, by
design), all these systems must have user IDs match for all interactive users to access their content.
OpenIndiana is the first operating system that doesn’t use UID 1000 for the first non-root user. We’ll need to
reboot into single-user mode to fix this.

Those of you on ARM Macs auditing or also enrolled in CS 596 probably remember my attack demonstration
failing just before spring break. It turns out there's a bug with networking in UTM version 4.6.x that affects
most CPU architectures in UTM ... but ARM64 is not one of them. That’s why we haven't noticed it yet over
here in CS 470, and this why it caught me by surprise during that demonstration.

We'll be running an Intel version of OpenIndiana here, and the 64-bit Intel architecture is affected by the
bug. You’ll want to download and install UTM 4.5.4 from https://github.com/utmapp/UTM/releases to
avoid network issues between your lab 5 VM and the rest of your CS 470 VMs. Gracefully shut down your
VMs before you re-start them all in the older version of UTM. They should work just fine without needing
to export and re-import them.

part zero: get it

Grab your wingtip shoes and twirl your handlebar moustache to web your way to the OpenIndiana download
page and download the text installation DVD ISO for OpenIndiana “Hipster” 2024.10; OI-hipster-text-
20241026.iso takes up just under 1 GB of storage.

The OpenIndiana team’s web server has been flaky of late; I’ve posted a copy of this ISO file in the ISOs folder
of the shadow website. If you have issues getting it from the OpenIndiana project’s site, don’t hesitate to grab
it from me.

part one: install it

Create a new custom VM on your shared VM/NAT network, using the following specifications:

• guest OS:
o Intel/VMware: Solaris 11 64-bit
o UTM: select “emulate” on the first screen, then “other” for the operating system

• firmware:
o Intel/VMware: legacy BIOS
o UTM: disable “UEFI Boot” on QEMU VM settings pane

• CPU:
o Intel/VMware: single virtual core/processor
o ARM/UTM: x86_64 architecture, “Standard PC (Q35)” system, single core

also on ARM/UTM, select Intel Core i7-9xx … (Nehalem-v1)

https://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html
https://github.com/utmapp/UTM/releases
https://openindiana.org/downloads
https://openindiana.org/downloads

6

• RAM: 4 GB (4096 MB)
• hard disk: 30 GB

ARM Mac / UTM people: disable your VM’s USB support, set your display card to virtio-vga, and your network
card to an e1000, if they’re not configured that way already.

Though its Solaris ancestor was widely regarded as the first and best at symmetric multi-processing in the Unix
world, OpenIndiana seems to have lost some of that magic. You really do need to make sure you’re only using
one core, or OpenIndiana will hang or panic during boot.

‼ IMPORTANT NOTE: yeah, OpenIndiana’s recommended minimum is 4 GB of RAM. If you’re going to be
running short on RAM during this class, it’s after labs 5 and 6. If that happens, you can suspend or shut down
your FreeBSD and Ubuntu VMs. Your OpenBSD and Rocky VMs will be necessary, for DNS, LDAP, and NFS.

!! ALSO IMPORTANT NOTE FOR ARM MACS: those of you on ARM Macs, you’re emulating a 64-bit Intel VM
because it and OpenIndiana were the best choice here to keep you with the pack. Like I warned you at the
beginning, there will be three labs in which you make concessions to use your ARM Mac. Here, this is because
the ARM port of the illumos kernel is not yet mature, and there’s only one old remaining publicly-distributed
version of a 32-bit Intel Solaris derivative out there (see www.tribblix.org). It isn’t a workable alternative.

1. While booting up the VM for the installation … does the boot loader menu look familiar?

When Sun open-sourced Solaris, FreeBSD (in its desire to be the best free server out there) grabbed
Solaris’ acclaimed ZFS filesystem and was the first non-Solaris operating system to be able to boot off a
ZFS filesystem. In return, many years later, OpenSolaris poached FreeBSD’s boot loader … because the
licensing terms were properly free (BSD) ... and it could already boot off ZFS!

http://www.tribblix.org/

7

You should select to boot multi-user … or you will time out into selecting it as the default option, which
is also fine.

At this point in time with OpenIndiana as recently as 2019, you used to receive a little text-based
parade through history … the kernel would identify itself during boot as SunOS release 5.11, also
known as Solaris 11, and Solaris 11’s open-source kernel fork would show itself in the kernel version
string as illumos. You’d also see a very long range of dates in the copyright notice and were readily
able to see this as a descendant of the original SunOS from way back in 1982, if you look at that Unix
family tree from levenez.com again.

Though the kernel now identifies itself as illumos-a8cd71ddc9, and the operating system as
OpenIndiana Hipster 2024.10. The illumos kernel seems to have shed itself of the advertising baggage
associated with the old OpenSolaris license. For many years it referenced various prior brand names,
including Sun, SunOS, and Oracle, but now none of them … until you get to a command line and run
uname.

In the first step after booting, select your language and keyboard layout, as usual!

After selecting your language, the illumos kernel will go detect and “configure devices,” then you’ll get
a menu. Door number 3, a shell, is to provide you a recovery environment if you ever should need it.
Go ahead and bust open a shell right away and run top. Since OpenIndiana wants 4 GB, we’re going to
watch RAM use very closely. As usual, we’ll hope to take some memory back later. It’s not using much
now, but when we get to playing with the über-bloated Solaris package manager later on, we’ll be
needing all of it.

‼ Solaris also has its own neat version of top, called prstat … go ahead and try it!

First, run uname -a and run there, you can see it, the old Sun Microsystems roots of OpenIndiana …

root@openindiana:/root# uname -a
SunOS openindiana 5.11 illumos-a8cd71ddc9 i86pc i386 i86pc

… it still identifies as SunOS 5.11 (AKA Solaris 11) and calls the Intel x86 “i86pc” like only Sun
Microsystems ever did, and always has, to distinguish from its early Intel-based but not PC-compatible
systems.

If you ls -l / you’ll easily be able to see that the username for the regular (non-root) user to run the
installer, also the username used by the larger live ISO and graphical installer, is jack. Coincidentally,
my son is named Jack, and I had a good friend named Jack who is a great Unix story himself … more on
that later.

https://levenez.com/unix/
https://en.wikipedia.org/wiki/Sun386i
https://en.wikipedia.org/wiki/Sun386i

8

Why OpenIndiana or OpenSolaris might have an affinity for people named Jack, I cannot find
conclusive evidence, but Jack has been the default non-root user on installation media going as far
back as 2009. As best as I can tell from web searching, this is either a reference to an early 2002 video
game or to a YouTuber trucker … nothing in OpenIndiana’s documentation explains why they chose
this username.

Run df -h and note the output … Solaris has a /devices tree, a virtual filesystem that contains a
further abstraction logically below the /dev file tree. Almost everything in /dev (run ls -l /dev |
more) is actually a softlink to the corresponding real device file under /devices. Also, look at (ls) the
contents of /dev/dsk … this is where the disk devices (or at least, their abstraction layers) live, using
the far more verbose AT&T-ish disk device naming format.

For instance, for the partition called /dev/dsk/c1t0d0s2, we’re referring to controller (c) one, target
(t) zero, disk (d) zero, and slice/partition (s) two. Note: precisely like BSD Unix, slice zero is almost
always the root filesystem, slice one is almost always a swap area, and slice two (c in BSD Unix) is by
convention a virtual “overlap” partition used to refer to the entire disk with a single device reference,
even if it’s got multiple partitions.

‼ IMPORTANT NOTE: You never, ever, ever want to make a filesystem on slice two (s2) of an AT&T-ish
Unix, or the c partition of a BSD-ish Unix disk. Immediate and great pain, suffering, and data loss are a
virtual lock to follow. Read the paragraph above again a second time for good measure and the
appropriate amount of self-flagellation for lessons that dispel the possibility of data loss.

Also note, from the output of df, that Solaris and its descendants interchangeably use swap spaces and
memory-based filesystems. When booting off read-only media like an optical disc (or an ISO file
pretending to be one), we need a few areas of the file namespace to be read/write … notably, /tmp

https://dlc.openindiana.org/docs/osol/20090715/getstart/html/login.html
https://dlc.openindiana.org/docs/osol/20090715/getstart/html/login.html
https://archive.org/details/flt-indj
https://archive.org/details/flt-indj

9

and /var/run (like a lot of Unix-ish OSs), home directories for users, /var/pkg for package tools, and
/etc/svc/volatile for service configuration information.

2. exit the shell to go back to the install ISO’s menu.

First, take a moment to make sure that the terminal type (option 4) is set to sun-color, especially if
you’re on an ARM Mac. I know it’s not one of the listed options, but manually key it in. If the installer
runs while $TERM is not set to sun-color, it’ll be pretty painful, as menus, borders, and input fields
won’t draw correctly. If you somehow get stuck with things not drawing correctly, make sure to read
the notes in red in this step carefully, and lean on control-L to make sure you can clearly see what
you’re doing.

!! REMINDER: control-L is a common way to ask your terminal to re-draw the contents of the
window, if log entries should spontaneously pop up over that bottom line of the screen and obscure
the hot keys, or if you have issues with character output on the console in UTM.

Now let’s go through door number 1, the installer. You’ll soon be welcomed to OpenIndiana’s text-
based installer. The design cues give it away to those of us who have been playing with Solaris for
decades …

… the colors are different from the red and blue of the long-time Solaris text-based installation dialogs,
but the insistence on using function keys for motion and putting those function key options in a
colored margin at the bottom of the screen totally give it away. OpenIndiana’s text-based installer is a
direct code descendant of the original Solaris text-based installer. A screenshot from Solaris 2.4’s text-
based installer, released in 1994, is shown just below; you be the judge.

10

!! NOTE: You really DO have to use the function keys here to move around and to complete forms on
the screen. Those of you on Mac keyboards may, depending on your Mac’s configuration, have to use
the Fn key to make sure your VM’s console sees keystrokes as function keys. Sometimes you’ll see the
command tips in the bottom change to Esc key combinations … they will both always work. Escape
keys are a concession to allow keyboards that don’t have function keys to work.

Hit F2 to continue and you’ll get to the “disks” screen.

If you have issues with text-based menus not displaying as they should on UTM, be patient and keep
in mind that your insertion point is initially at the end of default input strings. You can backspace to
delete, and make liberal use of control-L – don’t hesitate to spam it – to re-draw the window.

3. Choose your VM’s solitary virtual hard disk … of course, there are no other options on the “disks”
screen for installation targets. F2 again, to the partitions screen. If you see a warning about the loss of
all existing data, fear not, it’s just your VM. Choose to use the whole disk … we’re not going to do
anything besides OpenIndiana with it. F2 again. Lather, rinse, repeat.

4. Next, the “network” screen. For your computer name, solaris. Then use the down arrow to select a
manual setup, and hit F2 to continue as usual.

11

You should know what to do on the manual network configuration at this point in time, and you should
be able to easily look up this VM’s IP address in DNS or the prior labs, if it isn’t seared into your brain
already from all the data entry to date.

If you have issues with the installer taking the network configuration, or completing the installation
with the network configured, choose “None” and configure the network immediately after the first
reboot using the information in appendix two.

For years, we used the graphical installer for OpenIndiana, which offered no ability to set up the
network during the installation. Then, it always made us go through a dozen-step incantation
(preserved in appendix two) to set a static IP address, post-installation. You can kind of see their logic
… if you’re using a graphical desktop, it's probably a workstation, and a workstation likely doesn’t need
or want a static address.

5. Next, the ever-important time zone selection. Choose your region on the first page, F2, and keep
iterating until you find your time zone and pick it. I don’t care if you choose to be in Vanuatu, so long
as your VMs can talk to each other.

6. Check the system clock, adjust if you feel like playing with it, but we’ll be setting up NTP after we get
the operating system installed, as usual.

7. On the next screen, set a root password, and create your failsafe user account.

Review and confirm your installation settings and hit F2 to begin the installation.

You should have a progress bar soon afterwards, and then installation will take a short while. For

12

those of you on ARM Macs, this short while is going to be a little while longer for you. Installation is
one of those tasks where you’re really going to be slowed down; it might take up to a couple hours. Go
grab a bite to eat or take a break once you see the progress bar.

When it’s done, take a second to look at the installation log; it is not very long at all. In particular, note
the disk and filesystem configuration lines … OpenIndiana uses ZFS by default, which will use multiple
name-spaces within a single actual disk partition or slice, very much like Apple’s new-ish APFS
filesystem does.

Also, please note that we didn’t configure swap space. When you’re done with the log, go back and
reboot.

8. The first time a modern Solaris boots up, it initializes the smf (Service Management Framework)
database. As discussed briefly in lecture, smf is the Solaris replacement for the old AT&T Unix system
of init.d scripts. This initialization process takes a little while, but this is fortunately a one-time thing.

‼ IMPORTANT NOTE: it may seem like I use the terms “Solaris” and “OpenIndiana” interchangeably
here, but I do not. OpenIndiana is a subset of Solaris. Most of commercial Solaris was open-sourced,
not just the kernel (illumos), but the base operating system and userland as well. OpenIndiana is not
just an illumos kernel … it’s a direct descendant of Solaris, and it hasn’t diverged much yet.

After a minute or two – or a few more for ARM Mac users – you should see a login prompt.

ARM Mac users: if you missed some of the directives about how to set up your VM, the kernel may pop
off all kinds of notices and warnings now that it’s booting up into a full installed operating system

13

instance, about CPU details, about unusable USB adapters, and more. You can ignore them, unless
your VM completely hangs and fails to make it to a boot prompt after five minutes or so.

If you see any log messages pop out over your login prompt, worry not. Just like with Ubuntu’s first
boot, give it a carriage return (enter key) to get a new, fresh one.

Now that you have OpenIndiana installed, it’s time for the obligatory reminder about shutting down
your new VM gracefully, and telling you how to do it on this new operating system. OpenIndiana is still
a canonical System V (“System Five”) AT&T Unix, and while it has a shutdown command, it uses a
different syntax than used in BSD, or Linux, which uses a BSD-ish implementation of shutdown.
Whereas one might typically invoke BSD shutdown with …

$ shutdown -h now

… or -p to kill power after completion (the reason BSD didn’t have a separate poweroff utility), on an
AT&T-ish Unix, the same command would typically be …

shutdown -y -g 0

… the -y is to bypass a confirmation you’d like to shut down the computer, the -g is to denote a grace
period, and 0 is for the number of seconds in that grace period (none, now). Note the # prompt; there
isn’t typically a group that’s associated with granting the rights to run shutdown in AT&T-ish Unix, so
you’ll either need to run it as root or with sudo. Some System V implementations of shutdown don’t
want a space between -g and the number of seconds, so as always, I wholeheartedly recommend you
look at man shutdown before you run it.

The reboot and poweroff utilities are both here as well; as I believe I mentioned in a prior lab, the
poweroff utility originated with System V AT&T Unix.

14

part two: configure it

If you had to defer network configuration until after installation, go ahead to appendix two before continuing.

9. At this point, you should be able to SSH into your new VM, and set up key-based authentication in your
failsafe user’s account. Do it.

10. Let’s get our home directory over here to our new VM via NFS.

$ sudo mount rocky:/home /home
nfs mount: mount: /home: Device busy

Uh oh … /home is spoken for. It turns out /home isn’t actually where your home directory is, because
Solaris expects your system administrator to consider exporting it …

$ echo $HOME
/export/home/failsafe

… and /home itself was “busy.” Turns out, Solaris is running a service called the automounter (also
sometimes called autofsd), that we’ve talked about but are not going to use. Since we’re going to
“import” /home over NFS rather than export it, let’s get it out of the automounter’s configuration so
it’s not busy …

$ sudo vi /etc/auto_master

… comment out the line in /etc/auto_master starting with /home … and then let’s send it the HUP
signal to tell it to reprocess its configuration files.

$ sudo pkill -HUP automountd

pkill searches for all instances of a process matching a token (in this case, automountd), and sends it
the specified signal. The equivalent in *BSD and Linux is usually killall. Now let’s try to mount that
NFS share again …

$ sudo mount rocky:/home /home

… success, I sure hope! Before we can mount /srv/nfs, we’ll need to create that directory tree first.
Remember, the /srv file tree is a Linux innovation.

$ sudo mkdir -p /srv/nfs
$ sudo mount rocky:/srv/nfs /srv/nfs

 Now make it permanent …

$ sudo vi /etc/vfstab

… note that Solaris and its derivates put their filesystem table in a different place. Also note how a
switch is provided on this operating system to allow a filesystem to be registered system-wide in this

15

file, but not be mounted at boot time. Also also note how swap is mounted on /tmp and a swap
partition is additionally mounted from disk. This guarantees that the contents of /tmp are transitory
and will be gone after a reboot; they are stored only in virtual memory. Add these lines at the end:

rocky:/home - /home nfs - yes rw,nosuid
rocky:/srv/nfs - /srv/nfs nfs - yes rw,nosuid

The nosuid option disallows the setuid and setgid flags on the mounted filesystem … which is handy
for security, so that you can block an unknown somebody from placing programs that allow for
privilege escalation. An archetypal security coup de grace would be placing a setuid, root-owned shell
on another computer. Without this option in place, you’re effectively trusting the security of the NFS
file server … a lot.

You can test your edit to /etc/vfstab by unmounting and re-mounting /home and /srv/nfs. If you’re
specifying a mount point as the argument to mount, generally mount will check its filesystem table to
determine the filesystem to use, and vice-versa.

$ sudo umount /home
$ sudo umount /srv/nfs
$ sudo mount /home
$ sudo mount /srv/nfs

If you get no errors, awesome!

11. Strap in, folks … I’ve looked a few times at how to break up this step … but decided against it, each
time. As of the current version of me editing this sentence right now, the end of this step is several
pages away, but you learn some important lessons here.

Sometimes having user IDs synced up between machines is really, really important. Any time you
share filesystems in between systems with NFS is one of those times, and we are doing just that. First,
we need to fix our home directory …

$ grep failsafe /etc/passwd
failsafe:x:101:10:failsafe user:/export/home/failsafe:/bin/bash

… you may notice a couple problems here, but I’m not going to make you figure it out this time. Not
only is our home directory not under /home, but our user ID is not 1000 like on our other VMs, and the
default group ID doesn’t match. The id command is pretty handy.

Also, run this command …

$ ls -l /home

Note how the failsafe user doesn’t have ownership of its own home directory here, because of the user
ID mismatch. In order to fix this, we’re going to have to log out … we’re in the affected user account,
and we need to change it all at once, from another account.

Try to log in as root on the console, inside the VM’s window or tab in VMware. It rejects you, even
with the right password!

16

Roles can only be assumed by authorized users

OpenIndiana is enforcing proper security protocols on us, by not allowing us to log directly into what it
considers to be a “role” account. Remember how we log in as ourselves first, then use sudo to do
things as root? This is the same principle being applied here.

Because we don’t have another user on the system besides root and the account we need to fix, we’re
going to need to reboot into single user mode. Sorry, popping a root shell with sudo just won’t work
for this.

‼ IMPORTANT NOTE: we’re about to change a user’s ID #; when you do this, you typically want to make
sure the user is logged out and no processes are even running on their behalf (cron jobs?). Fortunately
this is a fresh account with little in it. That said, going into single-user mode is still probably the best
way to do this.

Reboot your Solaris VM, and when the boot menu comes by, choose option 2 to boot into single-user
mode. After you do that, it will ask you to log in to do maintenance … this is the only place your root
login will work.

After logging in, if you look at /export/home (with ls, of course), there’s nothing there, of course. The
ZFS root “rpool” has been imported, so that the kernel is aware of the filesystems in our ZFS partition.
However, only the root rpool has been mounted from the ZFS filesystem. Use zfs list to display all
the namespaces inside your ZFS filesystem; it should look fairly similar to my output.

$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 8.34G 20.2G 33.5K /rpool
rpool/ROOT 4.21G 20.2G 24K legacy
rpool/ROOT/openindiana 4.21G 20.2G 3.56G /
rpool/ROOT/openindiana/var 659M 20.2G 657M /var
rpool/dump 2.00G 20.2G 2.00G -
rpool/export 76K 20.2G 24K /export
rpool/export/home 52K 20.2G 24K /export/home
rpool/export/home/failsafe 28K 20.2G 28K /export/home/failsafe
rpool/swap 2.13G 22.4G 12K -

Fortunately, all we want to mount are /export, /export/home, and /export/home/failsafe. Even if
we’re moving our home area to /home, it would be sufficiently disruptive to a user to NOT own their
own files … so we’re going to fix them all, across the whole file namespace.

First, let’s mount all the filesystems.

‼ IMPORTANT NOTE: be very careful … we’re at a root shell for a while! Typos can be costly‼

zfs mount rpool/export
zfs mount rpool/export/home
zfs mount rpool/export/home/failsafe

Then, use mount to mount everything from the filesystem tables, including our home directories from
over NFS …

mount -a

17

… and then confirm they’re all mounted.

df -h

Now, let’s edit /etc/passwd …

vi /etc/passwd

Go to the line for your failsafe user, and change its user ID to 1000, to be in line with all the other VMs,
change your primary group ID to be 1000 too (which it should be on your other VMs as well), and
remove the leading /export from your home directory so that we go to NFS for the home directory …

before:
failsafe:x:101:10:failsafe user:/export/home/failsafe:/bin/bash

after:
failsafe:x:1000:1000:failsafe user:/home/failsafe:/bin/bash

… and save /etc/passwd. Now, let’s edit /etc/group …

vi /etc/group

… in here, because failsafe’s primary group was staff (10), we’ll add failsafe to the staff group by
putting it at the end of the line starting with “staff.” There shouldn’t be another user there, but if there
is, add failsafe after adding a comma in to separate the usernames. Also add the following line to
the end to properly add a failsafe group like on our other VMs. Solaris and its derivates just haven’t yet
gotten on-board with creating a group for each user; this is a relatively new practice in the bigger
picture of things, and it really originated in Linux.

failsafe∷1000:

When you get out of vi, run …

ls -l /export/home/

… and note that now, the failsafe account is no longer associated with the home directory that got
created for it by the OpenIndiana installer, because that filesystem object is still associated with user ID
101, and failsafe is no longer user ID 101 anymore as far as your OpenIndiana VM is concerned. Now,
let’s fix this … with the find command.

find / -user 101 -ls | more

This command tells find to look from the root of the filesystem for everything with user ID 101, and to
give the long output of ls for everything that matches. If you get some complaints from NFS, don’t
worry about them too much … nothing in NFS should be owned by user ID 101, right?

At times, I’ve seen a few things outside the failsafe home directory, notably under /devices, that also
had its ownership changed to user ID 101. Some of it, device files associated with the console, make

18

sense. Some of them, hard disk devices … should not be. I wondered if I’d just found a problem with
OpenIndiana’s installer. The point-and-click installer didn’t do this, and the 2023.10 and 2024.04
versions of the operating system didn’t do this either. The below screen shot is preserved to show off
this older anomaly.

Let’s get to fixing some files … first, let’s change the user ID of everything matching our old account …

find / -user 101 -exec chown -h failsafe {} \; -and -ls >
/export/home/failsafe/chown.out

… this command tells find to run (-exec) chown failsafe on all the files matching user ID 101. The
curly brackets are where the name of each file matched by find goes into the -exec command. -h
makes chown change the ownership of symbolic links too, rather than following them to what they
point at. The backslash and semicolon terminate the -exec command … if we didn’t escape out of the
semicolon with the backslash, it’d be interpreted by our local shell, and terminate find rather than the
command find is running. Also, instead of having find continue, we are asking it to also (-and) run ls
on the file (-ls). The greater-than (>) sends the output to the file you name.

I got an error that find couldn’t read /home/failsafe and /home/peter, and you should get it too
and know why it’s happening at this point.

When you look in that file you sent output to, you’ll note that the change of ownership isn’t made
before the ls is run … this is annoying, but it is what it is. You can check that it worked another way.

ls -la /export/home/failsafe

Before we bail out of single-user mode, we need to fix one last thing. Our failsafe account needs a
home directory, and if for some reason NFS fails … we’d be able to log in as failsafe, but we would
not have a home directory, and that could cause some annoyance. Fortunately, it’s easy to fix.

We’ve told OpenIndiana the home directory is at /home/failsafe, so if NFS isn’t on /home … the

19

contents of /home that would ordinarily be hidden underneath the mount point will be there, as we’ve
seen before, and we can use that to our advantage. Unmount /home and provide a symbolic link to
/export/home/failsafe from /home/failsafe …

ln -s /export/home/failsafe /home/failsafe

… you can test by making ls evaluate where ~failsafe is …

ls -la ~failsafe/

… if you omit the trailing slash in the command above, you’ll see the ls output for the symbolic link,
rather than the files that demonstrate this workaround actually works. Your failsafe account will
always have a home directory, whether or not /home is mounted from NFS. Just remember that your
files might be in two destination folders while you’re troubleshooting in that account, if NFS isn’t
working.

We’re done with the big step! Hit control-d to exit single-user mode, and the system will complete a
full multi-user boot. (This is common, by the way, using control-d to exit single-user or to log out, for
virtually all Unix OSs.)

12. Go ahead and set a root password; grading will not work later if we don’t do this again.

$ sudo passwd root

13. OpenIndiana’s service framework, inherited directly from canonical Solaris, needs us to enable all of
the NFS client’s dependencies in svcadm to reliably mount an NFS share at boot time.

$ sudo svcadm enable -r nfs/client

This command spit out this output, which was merely informational:

svcadm: svc:/milestone/network depends on svc:/network/physical, which has multiple
instances.

After a reboot, /home will now mount nicely and automatically at boot time, provided your NFS server
is up, of course.

14. !! READ OR SKIP BUT DO NOT DO THIS STEP, UNLESS YOU’RE FEELING ADVENTUROUS. I WAS UNABLE
TO GET LDAP TO WORK WITH OPENINDIANA, EVEN WITH THE HELP OF A FRIEND WHO USED TO WORK
ON THE LDAP AND X509V3 (CERTIFICATES) CODE AT SUN/ORACLE.

I’ll give away a bunch of extra credit if you’re able to get this to work, but I had to give up. The Solaris
LDAP client is its own code, with its own configuration tool. There’s a lot of documentation about the
Solaris LDAP client and its configuration tool … a lot of really bad documentation. There’s even more
discussion out there as to how deeply broken it is, than there is documentation of it, and that’s actually
saying something.

Oracle’s master documentation for setting up the LDAP client in Solaris 11.4:
https://docs.oracle.com/cd/E37838_01/html/E61012/clientsetup-1.html

https://docs.oracle.com/cd/E37838_01/html/E61012/clientsetup-1.html

20

Troubleshooting documentation:
https://docs.oracle.com/cd/E37838_01/html/E61012/setupproblems-1.html

Oracle’s HTML version of the man page for ldapclient, the LDAP client configuration tool:
https://docs.oracle.com/cd/E88353_01/html/E72487/ldapclient-8.html

Let’s add our CA certificate to OpenIndiana’s trust store. You should know how to get a copy of your
CA certificate from lab 1b over here by now, if you don’t already have a copy of it in your failsafe user’s
NFS home directory like I do.

Make a copy of it, and in that copy, remove everything before -----BEGIN CERTIFICATE----- and
anything after -----END CERTIFICATE----- …

https://docs.oracle.com/cd/E53394_01/html/E54783/kmf-cacerts.html

… Solaris’ documentation states that some applications are not able to handle the extra text; we best
be safe.

Use sudo to copy the file to /etc/certs/CA/cs470.internal.pem and then the following command
to cause OpenIndiana to re-parse its trust anchor directory.

$ sudo svcadm refresh /system/ca-certificates

Check the file /etc/certs/ca-certificates.crt to make sure it has an updated modification date,
and grep it for CS470 to see that it contains your CA certificate. As the Solaris documentation link
above states, you should also see a symlink to your certificate in /etc/openssl/certs.

Use sudo to make another copy of the certificate file, to /var/ldap/certdb.pem.

Set up OpenLDAP in /etc/openldap/ldap.conf … you should know what to do here. Aim ldap.conf
at the certs database in /etc/certs.

Enumerate services with LDAP in their name in the service management facility.

$ svcs *ldap*

Check the status of the LDAP client with the service management facility.

$ svcs -l network/ldap/client:default

Enable the LDAP client in the services framework.

$ sudo svcadm enable /network/ldap/client:default

Add dns before files to the hosts and ipnodes lines in /etc/nsswitch.ldap on your Solaris VM.

https://docs.oracle.com/cd/E37838_01/html/E61012/setupproblems-1.html
https://docs.oracle.com/cd/E88353_01/html/E72487/ldapclient-8.html
https://docs.oracle.com/cd/E53394_01/html/E54783/kmf-cacerts.html

21

Put cs470.internal into the file /etc/defaultdomain.

Solaris’ LDAP client also ties itself up with stubs left over from NIS. This was surprising with OpenBSD,
but isn’t surprising from the remnants of Sun, who developed NIS. This was them eating their own dog
food.

$ sudo mkdir /var/yp/binding/cs470.internal

Initialize the LDAP client’s state and auth files.

$ sudo touch /var/ldap/ldap_client_cred /var/ldap/ldap_client_file

These pages contain sample syntax for /var/ldap/ldap_client_file …
https://docs.oracle.com/cd/E19253-01/816-4556/clientsetup-1/index.html
https://docs.oracle.com/cd/E19253-01/816-4556/clientsetup-49/index.html

Solaris and its derivatives include a utility for setting up the operating system’s built-in LDAP client for
authentication. Even though it’s not supposed to need a username and password for the LDAP server
in “anonymous” mode, the tool won’t run if you don’t provide credentials.

$ sudo ldapclient -vvv manual -a authenticationMethod=tls:simple -a
certificatePath=/var/ldap/certdb.pem -a credentialLevel=anonymous -a
domainName=cs470.internal -a defaultServerList=openbsd.cs470.internal:636 -a
defaultSearchBase=dc=cs470,dc=internal -a adminDN=cn=admin,dc=cs470,dc=internal -a
adminPassword=r3dact3d

I gave up again.

An alumnus of the class got really, really close to getting this working last fall, so I’m passing along his
knowledge here, which replicated some portion of how close I was able to get.

What he ended up doing:
a. Create an NSS db. The certutil utility is apparently in the latest version of
system/library/mozilla-nss, but he couldn’t install this so I just used the libnss3-tools package
on Ubuntu.

$ certutil -A -n cacert -t "CT,CT,CT" -d db/ -i cs470.internal.crt

b. Configure ldapclient with proxy authentication; it claims to support anonymous authentication,
but nobody can get it to work.

ldapclient -vvv manual -a domainName=cs470.internal -a credentialLevel=proxy -a
defaultSearchBase=dc=cs470,dc=internal -a adminDN=cn=admin,dc=cs470,dc=internal -a
adminPassword=YourPassword -a enableShadowUpdate=true -a
authenticationMethod=tls:simple -a certificatePath=/var/ldap -a
proxyDN=cn=admin,dc=cs470,dc=internal -a proxyPassword=here -a
defaultSearchScope=sub -a defaultServerList=openbsd.cs470.internal:636 -a
serviceSearchDescriptor=passwd:ou=Users,dc=cs470,dc=internal?one -a
serviceSearchDescriptor=group:ou=groups,dc=cs470,dc=internal?one

c. Make configuration files world readable.

https://docs.oracle.com/cd/E19253-01/816-4556/clientsetup-1/index.html
https://docs.oracle.com/cd/E19253-01/816-4556/clientsetup-49/index.html

22

chmod 644 /var/ldap/*

d. Update PAM configuration in /etc/pam.conf (check man page for pam_ldap).

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_cred.so.1
CHANGE
login auth binding pam_unix_auth.so.1 server_policy
login auth required pam_ldap.so.1

Also do the same for rlogin auth and other auth. For some reason, you will get a password expired
on SSH unless you also do this:

other account requisite pam_roles.so.1
CHANGE
other account required pam_unix_account.so.1 server_policy
other account required pam_allow.so.1

15. Make a symlink from /usr/local/bin/bash to /bin/bash … you’ll have to make /usr/local/bin

first.

$ sudo mkdir -p /usr/local/bin
$ sudo ln -s /bin/bash /usr/local/bin/bash

16. Create a local version of your LDAP user. First, create the self-named user group for your LDAP user …

$ sudo groupadd -g 1001 peter

… then create the user …

$ sudo useradd -d /home/peter -g peter -G staff -u 1001 -R root peter

… and set that user’s password.

$ sudo passwd peter

You should now be able to SSH into your Solaris VM from as your LDAP user. No further action
required, since your home directory is mounted from the Rocky VM, and you properly own all your
files again. If you can’t, something’s wrong … go back and figure it out.

17. Add your failsafe and LDAP user accounts to the group sysadmin (14).

Give the sysadmin group permissions to run sudo in /etc/sudoers.

18. Network time protocol setup time!

Let’s drill in on ntp … you can also use svcs to search through the database of services.

$ svcs ntp
STATE STIME FMRI
disabled 16:23:27 svc:/network/ntp:default

23

… and enable it with the svcadm command …

$ sudo svcadm enable /network/ntp

… AT&T-ish Unix is big on its *adm commands, as you can tell … and now let’s verify it’s running …

$ ps -eaf | grep ntp

… also note here that with AT&T Unix, the ps command has an entirely different set of switches, and
where we use aux or auxww (dash optional) on BSD and Linux, we use -eaf on Solaris (dash not
optional) and other canonical AT&T-ish Unix, including AIX … although AIX is not very canonical, as
we’ll see in lab 5b.

19. Let’s prepare the system for updates and security fixes. I’ll spare you some suspense; OpenIndiana’s
going to run out of swap space here.

$ swap -lh
swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 272,2 4K 512.00M 512.00M

It's got 512 MB of swap. Let's give it 4 GB.

$ sudo zfs set volsize=4g rpool/swap

After a reboot, all that swap space is accessible.

$ swap -lh
swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 273,2 4K 4.00G 3.68G

20. Now, the package manager. While each Linux went its own way for package management (apt and
rpm are just the most common), BSD went another together (the ports tree or pkg), Solaris went in yet
another direction all its own, though its tool is also called pkg like on the BSDs. Grab the latest status
of the publication repository.

$ sudo pfexec pkg refresh --full

If you’re on an ARM Mac, this is going to take a long while. After you’re sure it’s started, take a break
and monitor it sporadically.

pfexec is being here to run the rest of the command in a “profile,” in this case the root “role” ability to
modify the operating system and the package registries. That’s right, as we saw earlier, root is a “role”
here in Solaris and its derivatives, not a user account, and gets extra protections.

I got the following error back from pkg …

pkg: 0/1 catalogs successfully updated:

1/1 repositories for publisher 'openindiana.org' could not be reached for catalog
refresh.

Unable to contact valid package repository: http://pkg.openindiana.org/hipster/

24

Encountered the following error(s):
 Framework error: code: E_MULTI_ADDED_ALREADY (7)
URL: 'http://pkg.openindiana.org/hipster' (happened 4 times)

If you don’t have the same problem, read the rest of this step but skip to the next.

$ netstat -rn
Routing Table: IPv4
 Destination Gateway Flags Ref Use Interface
-------------------- -------------------- ----- ----- ---------- ---------
127.0.0.1 127.0.0.1 UH 2 72 lo0
10.42.77.0 10.42.77.75 U 5 369 e1000g0

Routing Table: IPv6
 Destination/Mask Gateway Flags Ref Use If
--------------------------- --------------------------- ----- --- ------- -----
::1 ::1 UH 2 0 lo0

Of course, no default route. Fortunately, we’re not going to have to have to deal with any over-
engineered network configuration manager. Like netplan on Ubuntu, for many years, we had to deal
with NWAM (“network auto-magic”) on Solaris. It was neither auto, nor was it magic … good riddance
to foul garbage.

You just need to create the file /etc/defaultrouter and put the default gateway IP address into it, if
this happened to you too. That file is parsed, like the way Solaris did it for almost 30 years, at boot
time, and the default route is configured from it. Also, add the default route directly to the running
routing table to avoid a reboot.

$ sudo route add default 10.42.77.2

Run the pfexec command above again now, and again, if you’re on an ARM Mac, take a short break.

21. Now let’s see a list of updated packages. You might want to run this command in a screen, or on the
console of your OpenIndiana VM; OpenIndiana often lags on the network while using the package
manager with limited resources. If you’re on an ARM Mac, this is going to take a while. After you’re
sure it’s working, take a medium-sized break. This one takes a while, even on Intel CPUs.

$ sudo pfexec pkg update -nv

OpenIndiana asks for all that RAM because, it turns out, their package management tool is the very
definition of the word “bloated.” Don’t wait for the command above to run, to run this one in another
terminal.

$ top | grep pkg
 682 root 1 0 0 1599M 1443M run 0:46 8.30% pkg

That’s right … pkg is using over 1.5GB of RAM, though not much CPU. I logged in over SSH again to
watch top output while it was running. This year, we didn’t install the desktop environment, and it
seems to be holding at around ~175 MB of free swap, but it’s thrashing that swap. If you’re running an
SSD like I am, this doesn’t feel good.

25

A kludge should only be lived with for the very short term, maybe to get us through a night, the
weekend, or until help can arrive. A workaround may be okay a little longer, depending on its nature.
Having to manually intervene or automate a reboot after every patch may just not work for very long
at all, if we have many systems affected by the problem. Here, it'll probably work, but I’d rather not be
thrashing all our SSDs, and pkg will just run way, way faster with more RAM.

Once it finishes, install all available updates, and create a separate “boot environment” for the
patches, so we can go back if they don’t work, or don’t boot ... just like the loader menu we saw in
Linux, with options for the last couple installed kernels, especially if you updated your kernel in Rocky.
The option to create a boot environment is the be-name option.

$ sudo pfexec pkg update -v --be-name=240729

If you’re on an ARM Mac, this is going to take a long old while. After you’re sure it’s working, this may
well run overnight … or at least for a few hours. This one takes a while, even on Intel CPUs.

Note how I used a date-stamp for the boot environment name; update yours accordingly. This is the
patching and packaging subsystem using ZFS’ filesystem snapshotting capability to enable the ability to
back out – and to go forward as well – with system patches.

Then poweroff to lock in your patches, and while you have your VM down, go ahead and reclaim some
memory if you are running low and want to do so.

22. Installation of GnuPG for grading ...

$ sudo pfexec pkg install gnupg

… then let’s find where it was installed …

$ which gpg
gpg: Command not found.

... it was not there for me …

$ which gpg2

This is a common configuration, to show that GnuPG is not version 1, but rather gpg2 (version 2.x).

If you got gpg and gpg2 with the package, skip ahead to the next step. If which gpg said “not found,”
let’s make sure gpg2 is also found as gpg. Note: I am using a soft link here, because if we used a hard
link, and the built-in gpg2 command got updated, the hard link would probably stay the old version.
Using a soft link, we always point to what's there at /usr/bin/gpg2.

26

$ sudo ln -s gpg2 /usr/bin/gpg
$ ls -l /usr/bin/gpg

23. Mail forwarding … if you look in /etc/mail, you should recognize what you see there.

In /etc/mail/aliases, I did not find a root alias, so I added one …

root: peter@cs470.internal

… and ran sudo newaliases.

Solaris has always has some peculiarities here in setting up mail … first and foremost, it wants to know
who its “mailhost” is, like the smart host we used to use to kludge our way out of trouble on Ubuntu.
Edit /etc/inet/hosts …

$ sudo vi /etc/inet/hosts

… and add a line for our mail server ...

10.42.77.72 freebsd.cs470.internal mailhost.internal mailhost

Then, let’s edit /etc/mail/submit.cf, the config file for the submission mail server …

$ sudo vi /etc/mail/submit.cf

… the submission mail server just listens for local connections on loopback, and sends them on their
way. Find the line starting with Dj … it’s not far from the top, and let’s forcibly tell sendmail our
name. Uncomment it (remove the #) and fill in the name, replacing the example text …

Djsolaris.cs470.internal

Just a couple lines below, put our FreeBSD host after the DS option a couple lines below …

DSfreebsd.cs470.internal

… and then save the file and tell sendmail to re-read it.

$ sudo pkill -HUP sendmail

Then I used a similar mail command to test e-mail …

$ echo "test" | mail -t peter@cs470.internal

… and looked at the end of /var/log/syslog. Note that logs on Solaris are broken up, into /var/log
and /var/adm.

For further reading, I recommend: https://docs.openindiana.org/handbook/systems-administration/

https://docs.openindiana.org/handbook/systems-administration/

27

part three: log server configuration

In this second half of the lab, we learn the basics of using Ansible for remote management of systems and use
the tool to automate the configuration of centralized logging with syslog on each operating system.

Centralized logging allows us to accomplish two important goals. First, by offloading the logs from each
system, we’re able to put more trust in logs on a log server than we might trust logs on a compromised system
… not very much. Also, we’re able to view the logs of all our VMs in one place, rather than having to go on a
hunt for logs in each VM. In this way, we’re able to meaningfully compare logs across systems in an incident
that affects multiple systems. It’s for this reason that we’ve set up NTP (network time protocol) on each
system, to make sure that timestamps are accurate.

Since Rocky Linux is our storage VM, it makes sense to store all our logs within that VM. We’ll do this by having
a syslogd listen on Rocky Linux and accept logs from other systems, while all the other VMs will act as clients
… and we’re going to use Ansible to help set it all up. Ansible uses YAML, and as you’ll see over the course of
this lab, YAML is super picky about indenting and formatting … for this reason, I’ve provided a screenshot of
the final version of the primary configuration file in a monospaced text editor, in the first appendix to this lab.
Use it as a reference before asking for help … or invite certain scrutiny for not heeding the support policy.

YAML is so picky, in fact, that there’s a website dedicated to making fun of it: https://noyaml.com/

Speaking of picky configuration files, syslogd used to take the prize. Older implementations of syslogd
rigidly enforced whether you used spaces or tabs as a delimiter in between fields of its configuration file, and
would silently ignore violating lines in the file. The finicky nature of syslogd configuration, the number of
different ways to configure derivative logging services, and the need to centralize configuration makes log
centralization an ideal exercise for an automation lab. In field use, other additional common configuration,
such as patching, cron jobs, NTP configuration, and mail forwarding could be implemented once in an Ansible
“playbook,” and that playbook used to automate common configuration on all supported operating systems.

Before we go on, it’s important to note that there’s the original syslog, and there’s a more recent
replacement called rsyslog which is more feature-rich. We’ll be using both in this lab to utilize already-
included packages rather than downloading additional ones on top of them. The original syslog, for example,
doesn’t support TCP connections – only UDP – so we’ll be configuring our rsyslog server to listen for UDP,
despite it also being compatible with TCP. The BSDs and other genetic Unix systems (OpenIndiana, AIX) have
syslog installed by default, while Rocky Linux, Ubuntu, and other Linux-based distributions tend to come with
rsyslog instead, if they come out of the box with a logging daemon at all.

First, let’s configure rsyslog on Rocky Linux.

24. Double check that syslog is running.

$ systemctl status rsyslog

should return that rsyslog.service is active.

25. Use vi to edit /etc/rsyslog.conf. Uncomment the lines that specify the module and input for
imudp. This will allow syslog to accept UDP connections on port 514. After those lines, add the

https://noyaml.com/

 CS 470 Lab 5

28

following two lines to configure the locations for each system’s logs.

 $template FILENAME,"/var/log/systems/%HOSTNAME%.log"
 *.info ?FILENAME

Note: in between info and ?FILENAME, that’s a tab, because really old versions of syslogd required
use of tabs in their configuration files. Of course, only the Solaris derivative forces this on us now.

26. If you’ll remember from lab 3, Rocky Linux comes with a firewall. We need to allow rsyslog as a
service through this firewall …

$ sudo firewall-cmd --permanent --zone=public --add-service=rsyslog

… but this interestingly enough returns that rsyslog is not among existing services. This command …

$ sudo firewall-cmd --get-services | grep log

… shows us that it’s referred to as just syslog within the firewall. Fix the above command and reload
the firewall.

$ sudo firewall-cmd --permanent --zone=public --add-service=syslog
$ sudo firewall-cmd --reload

Verify that syslog is now in the firewall’s allowed services.

$ sudo firewall-cmd --info-zone=public

public (active)
 target: default
 icmp-block-inversion: no
 interfaces: ens160
 sources:
 services: cockpit dhcpv6-client mountd nfs rpc-bind ssh syslog

27. Now that we added syslog as a valid service to our firewall, restart rsyslog itself for the
configuration changes we made a couple steps ago to take effect.

$ sudo systemctl restart rsyslog
$ ^restart^status

We don’t need to enable it ourselves, because we can see from the systemctl status command that
it’s enabled as a vendor default. Look in /var/log/systems … it has been created, and you should
already be seeing logs in there for your Rocky Linux VM.

28. From the rsyslog configuration file, the port that syslog is listening on is 514. Confirm that with
netstat:

$ netstat -an | grep 514

 CS 470 Lab 5

29

part four: first client configuration

29. We need to configure all of our systems to send their logs over to our main server. Let’s start with
OpenBSD. Check the status of syslogd …

$ rcctl check syslogd

… this should return ok. If it isn’t running, just restart the service.

30. Use vi to edit /etc/syslog.conf and add the following line to the end of the file:

 *.info @rocky

This line tells syslog to forward all logs to our Rocky Linux VM. Once again, note that for
syslog.conf, that’s a tab. We want to use tabs instead of spaces.

syslogd starts up before named on our OpenBSD VMs, so let’s make sure it never has a problem
finding its log server, even during the boot process. As we’ve done before, add a line for rocky in
/etc/hosts on your OpenBSD VM.

Next, we need to restart syslogd after making this change …

$ sudo rcctl restart syslogd

… it should echo ok twice, once for stopping it, once for starting it back up again, as usual with rcctl.

31. Now let’s test logging …

$ logger "openbsd test 1"

You can see this log locally on OpenBSD by running …

$ tail /var/log/messages

To see it on your Rocky Linux VM …

$ sudo tail /var/log/systems/openbsd.cs470.internal.log

To confirm the logs are now being sent to Rocky Linux.

Now that we’ve configured this for OpenBSD, we need to configure the remaining machines in our
network … but we’re not going to do this manually. We’ll be using Ansible for the rest of the systems,
but keep note of the following configurations for each system.

On FreeBSD:

 CS 470 Lab 5

30

 to manage the syslog daemon: /etc/rc.d/syslogd
 syslog configuration file: /etc/syslog.conf

On Ubuntu:
 to manage the rsyslog daemon: systemctl rsyslog
 syslog configuration file: /etc/rsyslog.conf

On OpenIndiana:
 to manage the syslog daemon: svcs system-log
 syslog configuration file: /etc/syslog.conf

After configuring all of our local VMs, we’ve now successfully set up Rocky Linux as our centralized
logging server. This is on top of it already being our network file share.

part five: Ansible host

We’re going to setup and use Ansible. Ansible is a tool that allows you to manage multiple servers at once,
rather than manually configuring each. We do this by configuring what and how we want everything to
happen once, while Ansible takes care of the rest.

We’ll use OpenBSD as the host of our Ansible configurations. When you use ssh to connect to your OpenBSD
VM in this lab, always use the -A switch to forward your SSH agent to your OpenBSD VM. As you’ll see,
Ansible uses SSH for transport, and by forwarding your agent, you won’t need to log in to any of the systems
we’re automating actions on. It wouldn’t be very automated if you had to provide a password for each
system, now would it?

32. On your OpenBSD VM, make a directory at /home/ansible for your Ansible configuration files, and
make it sudoers group writable, so that your failsafe account and LDAP user can both use that
directory. We’ll come back to this later, as we’ll be using OpenBSD to host and configure Ansible.

33. Ansible documentation shows pipx as the preferred way to install and manage Ansible. pipx is an
extension of pip, Python’s package manager, and Ansible is built on top of Python. Thus, Ansible
requires Python on all systems it is used on (including the systems you target) to run … thankfully, all of
our VMs in this course come with Python installed by default.

Unfortunately, OpenBSD does not have an official port of pipx, which means we have no choice but to
compile it from source.

Navigate to sysutils/py-pipx under the ports tree, and get compiling …

$ sudo make install

This should only take a minute or two. Once it’s done compiling, verify that it’s installed.

 CS 470 Lab 5

31

$ pipx --version

34. Ansible comes in two main flavors: ansible, a community distribution with a variety of tools that we

used in prior versions of the class, and ansible-core, a minimum distribution which only contains the
Ansible engine and language. We won’t be needing the extra tools from the community distribution,
so we can save some resources here.

Let’s try and install ansible-core with pipx.

$ pipx install ansible-core

I got an error that certain dependencies, namely maturin and installable, failed to build,
complaining that rustc was not found. rustc is the compiler for the Rust programming language, and
seeing as maturin is written in Rust, the error checks out. You can compile Rust from the source tree
… or get it installed far more quickly with pkg_add.

$ sudo pkg_add rust

Try installing ansible-core again using pipx. This will take a while longer than before.

⣷ installing ansible-core
 installed package ansible-core 2.18.4, installed using Python 3.11.10
 These apps are now globally available
 - ansible
 - ansible-config
 - ansible-console
 - ansible-doc
 - ansible-galaxy
 - ansible-inventory
 - ansible-playbook
 - ansible-pull
 - ansible-test
 - ansible-vault
⚠ Note: '/home/peter/.local/bin' is not on your PATH environment variable. These
apps will not be globally accessible until your PATH is updated. Run `pipx
ensurepath` to automatically add it, or manually modify your PATH in your shell's
config file (e.g. ~/.bashrc).
done! ✨ 🌟 ✨

I was taken aback by the terminal emoji, but after installation is complete, try running …

$ ansible --version

… to get some details about Ansible’s versioning and configuration. You should do this whenever you
install a piece of software you expect to use, to see how it was built.

I got an error telling me that ansible wasn’t found. Now is a good time to take a step back here to
understand what pipx actually does.

 CS 470 Lab 5

32

With pip, Python’s built-in package manager, packages are installed system-wide, which comes with
some problems. In many cases, we need to install different versions of the same package, which isn’t
really possible with a system package manager, since there’d be no way to tell the binaries from each
version apart.

Python’s solution to this is virtual environments … virtual like virtual machines, but virtual in the sense
that one system can have multiple Python environments that are isolated from each other. Each
virtual environment has its own set of installed packages, which allows us to install two different
versions of the same package, so long as they are in different virtual environments. To use a virtual
environment’s packages, we’d typically add its configuration to our PATH environment variable to make
all of its binaries available to us. This can get cumbersome, especially when all we care about right
now is getting Ansible up and running.

Enter pipx. pipx is designed to seamlessly install Python applications while avoiding the problems
mentioned earlier. It achieves this by creating a separate virtual environment for each application,
keeping them and their dependencies isolated from one another.

With this in mind, look back at the warning pipx gave us after it finished installing ansible-core. It
tells us why ansible isn’t available, and tells us how to fix the problem. Read what it says, and do it.

Test again with ansible --version. You should now see some real output. Also note that the
ansible binary is located in a pipx virtual environment, as explained earlier:

$ which ansible
/home/peter/.local/bin/ansible

35. Before we do our first configurations and run Ansible, there is one important thing to note about how
Ansible works: it is idempotent. Idempotence means that you can run something once, or a dozen
times, and still get the same result back once. An example of idempotence would be installing a
package through a package manager like apt once, and if you run it with the install verb a second
time, there won’t be an additional instance of that package installed – the package manager,
depending on its design, would either exit gracefully or update the package if it needs one, depending
on the design.

We can run Ansible in two ways. Much like Docker, we can specify flags on the command line to
specify certain actions. Much more useful than that, however, are the configuration files we can write
that allow us to specify a whole lot more than what can be reasonably fit into single command lines.
There are three in Ansible that are important: Playbooks, the Ansible .cfg file, and Inventory files.

The ansible.cfg and inventory files are purely configuration files. They help us define some defaults
and our list (inventory) of machines we’d like to target. The first thing we want to do is to write out
these two files.

Navigate to /home/ansible. Generate an ansible config file with ansible-config init --disabled,
but note that it just outputs to stdout by default, so we have to redirect it to ansible.cfg. Then, use

 CS 470 Lab 5

33

touch to create the files inventory and syslog_clients.yml.

Add the following to your ansible.cfg file above [privilege_escalation] …

 INVENTORY = /home/ansible/inventory
 remote_tmp = /tmp

… then add to inventory like so:

 [cs470]
 freebsd
 ubuntu
 solaris

The [cs470] heading in the inventory file is the token you will reference when running Ansible on
that set of computers.

Note wherever you create your ansible directory and place your configuration files. Ansible
prioritizes the current directory, and the ansible.cfg file in it, when you run ansible.

36. Before we get into playbooks, let’s start off with running a simple command across all our systems.
This is called an ad-hoc command in Ansible.

$ ansible cs470 -a "hostname"

This will run hostname on all systems listed under cs470, in the inventory file.

If you haven’t yet logged into each of those VMs from your OpenBSD VM with SSH, it might be a good
idea to do so manually first. As should be obvious, Ansible uses SSH for transport, and will get hung up
on accepting SSH host keys if you haven’t logged in before. Also worth noting, if you did your SSH
agent and agent forwarding setup correctly from lab zero, you won’t have to provide a password for
each system.

You can try this with other commands, too, but beware: not all systems have the same syntax for each
command. This way of running commands with Ansible is not considered best practice, and Ansible
has a good replacement for this, called modules. We’ll get into the module system with playbooks.

One thing you might have noticed is that the order of which machine goes first is not always the same.
Ansible forks itself so that it can configure multiple systems in parallel, instead of waiting for one
system to finish before configuring the next. By default, Ansible forks itself 5 times, so that it can
configure up to 5 systems at once. This makes the order of which server gets hit, or returns first,
completely non-deterministic.

37. Now, let’s write the actual playbook. It’s going to be our syslog_clients.yml file, and as the name
implies, will configure syslog to forward logs on all the remote systems.

 CS 470 Lab 5

34

NOTE: When writing YAML files, you simply CAN’T use tabs to indent lines. You always have to use
spaces for all indentation.

If you installed a more modern editor like vim or neovim, it’ll know that you’re editing a YAML file and
try to help you out by automatically inserting two spaces whenever you press tab. However, if you
DON’T want two spaces, you can input a literal tab character by entering insert mode and hitting
control-v (letting go of those keys after) before hitting tab.

Let’s start our file off with the following structure …

 - name: configure syslog clients on the CS470 network
 hosts: all
 become: true

... and let’s break down what it all means. The name field is simply a title for the specific task that you’ll
be running. Since this is at the top level, consider it as the name for the entire Playbook which will be
echoed at the very beginning when you first run it. The hosts field specifies which hosts we want to
run this on. Finally, the become field tells Ansible to run with privileged permissions … that is, become
an admin during the duration of the tasks. Since this is at the top level, all tasks will run with sudo, but
you can also specify sudo for each task.

A task in Ansible is a command you want to run, or configuration you want to change. A handler is like
a task, but is something that you typically only want to run when a task makes a change on your
remote system.

Write out the file you were in; we need to go back to the shell.

38. Make a directory called host_vars in /home/ansible. Then, make a YAML file for every host within
that directory:

$ touch freebsd.yml ubuntu.yml solaris.yml

The daemon name and the location of the configuration file differs in between operating systems. As a
result, we need to use these files to set variables that will contain the correct values for each system.

Within freebsd.yml, place the following:

 syslog_service_name:
 - name: syslogd

 syslog_conf_paths:
 - path: /etc/syslog.conf

Do the same with the files ubuntu.yml and solaris.yml, replacing the name and path fields as
needed with the configurations found at the very end of part four of this lab.

 CS 470 Lab 5

35

39. Go back to editing the syslog_clients.yml file. We’re going to model this file after the steps we
took earlier to configure logging on OpenBSD. First, we write a task to check the status of the logging
daemon:

 tasks:
 - name: Check the status of the syslog daemon
 service:
 name: "{{ item.name }}"
 enabled: yes
 state: started
 with_items: "{{ syslog_service_name }}"

The service field refers to an Ansible module called “service.” This module will use the built-in service
management system (like systemd on Ubuntu and Rocky Linux) on each system, rather than having to
write out commands specific to each system, with a bunch of conditionals.

The name subfield refers to the name of the service you want to interact with. You’ll notice a unique
syntax, we’ll get back to this later. The enabled subfield tells Ansible if you’d like the service to be
enabled at boot or not. The state subfield tells Ansible what state you’d like the service to be in
currently.

The with_items field creates a loop over a list of items. This list of items is compiled by Ansible
automatically since we used the default directory of host_vars and placed YAML files based on the
hostname within that directory. Since we’re referencing the syslog_service_name variable,
with_items creates a list of our 3 values and exposes the item variable within that task to allow us to
refer to that variable. This special templating syntax in Ansible is called Jinja.

Save the file and run the playbook. Notice that like Docker and Docker Compose, running Ansible on
the command line and running an Ansible playbook are different commands.

$ ansible-playbook syslog_clients.yml -K

The -K flag here will prompt you for the “BECOME password”, which will be your sudo password on
the systems; since you should be using your LDAP user account here, your sudo password should be
the same on all systems except maybe Solaris.

Note the results. Ansible nicely formats what happened at each stage and gives a synopsis of any
changes, variables used, and the status of each task.

40. Before we move on to the next step, let’s introduce another piece of versatile automation software

that will make your lives easier. expect is a tool that can be used to automate other pieces of
software, it’s able to “talk” with other programs that require input. It can be used in virtually all
modern operating systems and can make many processes easier through automation, as you will soon
see. First things first, let’s get it installed.

Using pkg_info again, find the right version of expect to install. The top result is what we need.

 CS 470 Lab 5

36

While Ansible has its own expect module, we will be using a separate module for what we’re using
expect for later. I’d advise you to look at it in your free time if you want to learn more about Ansible.

41. Next up, create a file named become.sh and make sure it’s executable as well. The .sh signifies that
the file is a bash script, which will allow us to run written commands in a file. No need to manually run
multiple commands repeatedly, when you can just script it.

42. Within become.sh add the following lines:

#!/usr/local/bin/expect
set timeout -1
spawn ansible-playbook syslog_clients.yml -K
expect "BECOME password:"
send -- "<your root_password here>\r"
expect eof

Let’s go over what this does.

set timeout -1 tells the system to not set a timeout for this script, we don’t need one. spawn
ansible-playbook syslog_clients.yml -K is automating the command for us. spawn tells the
system to create another process and runs the command we give it, in this case the command to run
the playbook. This way instead of having to copy and paste, or scroll through the bash history, we can
just run the script and it’ll do it for us. expect tells the system to be on the lookout for output that
requires input, otherwise we’d be sending data at every possible moment while a process was running.
In this case, we know our playbook will always request the BECOME password every time.

send does exactly that; it sends the information in the quotation marks to what the script is expecting.
I hope your root passwords are all the same, otherwise you have research to do. You can do this for
any process or software you know what the requesting line is.

From here on out, you can use ./become.sh to test out your playbook without needing to input your
root password every time. Keep in mind, however, that this is really bad practice. In real life, we do
not want to store your root password, or any password, in plaintext, anywhere, ever. Really insecure,
but we needed something to demo expect with.

43. The next thing we need to do is to automate the addition of a log-forwarding configuration line to the
end of each system’s logging daemon configuration file. Create a new line after the previous task and
model it like so:

 - name: add configuration line to the end of the syslog config file
 lineinfile:
 path: "{{ item.path }}"
 line: "*.info @rocky"
 with_items: "{{ syslog_conf_paths }}"
 notify: restart syslog daemon

The notify field here refers to the handlers we discussed earlier. This tells Ansible to invoke the
handler if that task has a change.

 CS 470 Lab 5

37

44. Remember idempotence? Ansible will remember if it inserted a line to the end of those files in the
previous task. If you were to run that task again, Ansible will detect that no changes are needed and
make no changes. However, when there is a need to make changes, we’ll need to restart the logging
daemon on each system and do some test logging. Let’s write the handlers for those…

Above your task section, create a handlers section, and write out the following:

 handlers:
 - name: restart syslog daemon
 service:
 name: "{{ item.name }}"
 state: restarted
 with_items: "{{ syslog_service_name }}"
 notify: log to console

 - name: log to console
 shell: 'logger “Testing from $(hostname)"'
 args:
 executable: /usr/local/bin/bash

Notice that our first handler notifies the second handler to run.

On your Solaris VM, make a symbolic link from /usr/local/bin/bash to /usr/bin/bash … you will
have to make sure the directory tree is there first. If Peter had gotten LDAP working on Solaris, this
symbolic link would have been there.

45. Now that we’ve finished writing our playbook, run the playbook again with the command from earlier.
Make sure to type out your sudo password on the prompt.

One thing we can do is encrypt values with ansible-vault. This will allow us to store the sudo
password securely on the system, in a vault file, which is managed by Ansible.

While in /home/ansible, run …

openssl rand -base64 32 > .vaultpass

… to generate a pseudorandom string of 32 bytes with Base64 encoding. We’ll use this as our vault
password. Get the contents of the file in a terminal using your command of choice, and copy the
password.

Now, create an Ansible Vault encrypted file using …

$ sudo ansible-vault create vault.yml

… notice it prompts you for a new vault password. Use the password you generated earlier with
openssl and paste it into the prompt.

You’ll be placed in a vi window. Write out the contents of the file as such:

 CS 470 Lab 5

38

 sudo_password: <your_sudo_password>

Note that to interact with this file, ansible-vault provides encrypt, decrypt, and edit options.
Encrypt and decrypt work on the vault file and will leave the file within the state you left it in, meaning
you could accidentally leave your vault file decrypted if you don’t encrypt it again. Preferably, you
should use ansible-vault edit to view and edit the file in a temporary vi window, while the file
itself doesn’t get decrypted on the drive.

If you were to view this file in vi or output it to the console, you’ll notice it’s not human readable.
Furthermore, the header tells us that ansible-vault uses AES-256 for encryption, the same
symmetric encryption standard Uncle Sam uses for secret stuff.

46. Now that we’ve created a vault password to store our sudo password, modify your
syslog_clients.yml file with the following lines between your “become: true” and “handlers:”
lines:

 vars_files:
 - /home/ansible/vault.yml

 vars:
 ansible_become_pass: "{{ sudo_password }}"

The vault.yml file is owned by root:wheel by default. Take a look at the permissions of that file and
change them so that you can pass that file into ansible-playbook without needing sudo to access
that file … you probably just need to make it group-readable. Using sudo would also introduce other
issues, like ansible attempting to ssh into your VMs as root.

And finally, to run the playbook without a prompt:

$ ansible-playbook syslog_clients.yml --vault-password-file
/home/ansible/.vaultpass

Voilà! You’ve now encrypted your sudo password on the disk and created a password to protect that
sudo password. This means your playbooks can now be automated and run without a human being in
the loop, and without exposing the sudo password. From here on out become.sh is no longer
necessary, as trying to run the playbook without the vaultpass is impossible, unless you remove it
from the playbook, and the command does exactly what become.sh does. Your password is also
encrypted in the vault too.

If you had a different sudo password for each system, it’s possible to vault-protect multiple sudo
passwords with host_vars like we did with the daemon name and conf file path above, but we won’t
be doing that in this lab. Hopefully you had the same password for your LDAP user’s local namesake
on Solaris … if you didn’t, just change it.

The screenshot of syslog_clients.yml on the following page is provided as a reference, because of

 CS 470 Lab 5

39

YAML’s pickiness about formatting.

47. On your Rocky VM, do this to make sure your centralized logging destination is accessible:

$ sudo chgrp -R wheel /var/log/systems
$ sudo chmod 750 /var/log/systems
$ sudo chmod g+r /var/log/systems/*

 CS 470 Lab 5

40

appendix one: final Ansible configuration

 CS 470 Lab 5

41

appendix two: network auto-magic

This portion of lab 5 was brought back in 2025 from the 2021 version of lab 5, just in case you had an issue
configuring the network on OpenIndiana with the installer. If so, you could use the “none” option for the
network during installation, and then configure the network immediately after installation.

Solaris used to put its IP address information in an /etc/hostname.if file, just like OpenBSD currently does,
and the default router in /etc/defaultrouter. However, Solaris and all its descendants have now moved on
from this.

I checked out Oracle Solaris, and it appears to now put network configuration information into /etc/zones
and /etc/svc/profile/sysconfig – I found it by doing a recursive grep with the -r switch for the network
interface name in /etc … but both of these turned up empty in OpenIndiana if I didn’t configure the network
or chose the “Automatic” option during installation. It turned out, of course, that the best first step was a web
search for “configure network OpenIndiana,” and this link was the secret sauce … not only had the former
OpenSolaris people named the network configuration subsystem after an annoying way of things fixing
themselves without you knowing what was ever broken (“auto-magic”), but this new over-engineered tool
that bucks 30+ years of simply editing text files is somehow “auto-magic.”

The tool we’re looking for is called nwamcfg.

First, though, let's make sure we know what network interface we're configuring. Run ifconfig -a to see
what interfaces your VM has, and remember that lo interfaces are typically loopback adapters. My network
interface is definitely called e1000g0.

Now let's run nwamcfg.

$ sudo nwamcfg

This should give you a nwamcfg> prompt. When I get a prompt for a specific application, I always try help or
simply ? to see what I can do, even if I know what I want to do, and that made me realize that what I really
wanted to do was to poke around, with the list command, I saw a single NCP (“Network Configuration Profile,”
because we need more acronyms in tech) … “Automatic.” “Automatic,” unlike nwam and NCP, is a great name
for a configuration that uses DHCP to automatically set up the network … so let’s set up another profile,
“static” … incorporating our VM’s only network interface, whatever ifconfig told us it was before.

nwamcfg> create ncp static
nwamcfg:ncp:static> create ncu phys e1000g0
Created ncu 'e1000g0'. Walking properties ...
activation-mode (manual) [manual|prioritized]>
enabled (true) [true|false]>
link-mac-addr>
link-autopush>
link-mtu>

https://docs.openindiana.org/handbook/systems-administration/#using-nwam-configuration-tools

 CS 470 Lab 5

42

Note: in the transcript above, where there’s no input shown after the > prompt, I only supplied a carriage
return to accept the default for each after creating the interface. All the defaults (in parenthesis here) seem
to be fine, and for the MAC address, autopush, and MTU (maximum transmission unit), we want to provide no
special settings.

Now we apparently save our changes with the commit command, and get out of raw interface configuration
with the end command.

nwamcfg:ncp:static:ncu:e1000g0> commit
Committed changes
nwamcfg:ncp:static:ncu:e1000g0> end
nwamcfg:ncp:static>

At last, let’s set up the interface’s IP address. Use create ncu ip with the name of your network interface,
and after you’re done, commit, and exit.

nwamcfg:ncp:static> create ncu ip e1000g0
Created ncu 'e1000g0'. Walking properties ...
enabled (true) [true|false]>
ip-version (ipv4,ipv6) [ipv4|ipv6]> ipv4
ipv4-addrsrc (dhcp) [dhcp|static]> static
ipv4-addr> 10.42.77.75
ipv4-default-route> 10.42.77.2
nwamcfg:ncp:static:ncu:e1000g0> commit
Committed changes

At this point previously, an exit just brought me up a logical level within nwamcfg, to ncu, and then to
static. Now the first exit ejects you from the program … no problem, though, just run it again and now,
let’s create a location …

nwamcfg> create loc static
Created loc 'static'. Walking properties ...
activation-mode (manual) [manual|conditional-any|conditional-all]>
enabled (false) [true|false]> true
nameservices (dns) [dns|files|nis|ldap]>
nameservices-config-file ("/etc/nsswitch.dns")>
dns-nameservice-configsrc (dhcp) [manual|dhcp]> manual
dns-nameservice-domain> cs470.internal
dns-nameservice-servers> 10.42.77.71
dns-nameservice-search> cs470.internal
nfsv4-domain>
ipfilter-config-file>
ipfilter-v6-config-file>
ipnat-config-file>
ippool-config-file>
ike-config-file>
ipsecpolicy-config-file>

… commit …

 CS 470 Lab 5

43

nwamcfg:loc:static> commit
Committed changes

… and exit again. Now, let’s make our profile and location the defaults back out at a shell.

$ sudo nwamadm enable -p ncp static
$ sudo nwamadm enable -p loc static

You should be able to validate it’s taken hold by running ifconfig -a … also check the contents of
/etc/resolv.conf. Test it’s working with the usual set of remote IPs and public website names, to make
sure your OpenBSD name server is serving up internet DNS resolution, and that your new Solaris-ish VM is
able to access them.

 CS 470 Lab 5

44

appendix three: Jack

OpenIndiana always brings Jack to mind, thanks to the username used on the OpenIndiana live ISO prior to
installation. Not my son Jack, but my hacker buddy Jack, very much my brother in Unix.

One day I was working on a pen-test with Jack, when Jack thought he found a flaw on that customer’s web
server. It turned out to be a security issue in the underlying programming language itself (perl), and it
affected pretty much every Unix/Linux system in the whole world, and a whole lot more.

Another day, Jack decided the ubiquitous portscanner nmap was a slow and bloaty piece of crap, and he
decided to write a tool to portscan the entire routable internet in a matter of hours. When he finished the
first distributed asynchronous TCP and UDP port scanner, this dyed-in-the-wool punk rock hacker decided to
name it “Unicorn Scan,” because unicorns were so not Jack, and so not his scanner either.

This one’s for you, Jack. Jack’s badass tattoo keeps this little detour completely on-point.

RIP Jack Louis 1977-2009

 CS 470 Lab 5

45

RIP Sun Microsystems 1982-2010

</lab5>

