CS 470: Unix/Linux Sysadmin
Spring 2025 Lab 4
Ubuntu, containers with Docker, and web server with NGINX

Things from prior labs that are required to begin this lab:
e lab 3: Rocky Linux up, online, and sharing files via NFS
Things in this lab that are on the critical path for upcoming labs:
e getting Ubuntu installed, running, and connected to NFS
e getting Docker and NGINX operational

co-authoring credits:
e 2024 TA Bryan Zublin replaced BitWarden with VaultWarden and fleshed out the Linux boot process

This lab gets our hands dirty with the other super-major Linux distribution, and by far the most popular,
Ubuntu. With the tactical missteps recently made by Red Hat as discussed in lab three, expect that gap to
continue to grow. Ubuntu was clearly ready to capitalize; the screenshot below is of a link on the main page
of the website at ubuntu.com, the day after Red Hat announced it was killing off CentOS as we knew it.

?‘Z' CentOS users, 6 things to know when considering a migration to Ubuntu LTS »

The link was there for almost three years, on the main page at ubuntu.com, without even having to scroll to
see it. That says something.

We often call Linux operating systems “distributions” because, like we've discussed in lecture ... Linux isn’t an
operating system. Linux is a kernel, and a collection of tools directly around, and related to that kernel.
Everything else that a vendor puts around it, that makes it a whole operating system ... uses Linux, but is not
Linux. So we end up with these distributions, these piles of software, built around the Linux kernel, organized
by vendors, that provide the value we expect of an operating system. Red Hat Linux, Ubuntu Linux ... you get
the idea.

Ubuntu Linux is based, in turn, upon Debian Linux, which is named for the project’s founders, Deb and lan.
Debian-based Linux distributions tend to use the . deb package format and the apt package manager, very
analogous to the situation with . rpm packages and the yum or dnf package managers on Rocky Linux and Red
Hat-derived distributions, of which there are several, as discussed at the beginning of lab 3.

Other Debian-based distributions include Kali Linux, which some of you may have already used in CS 574/596,
and ParrotOS, another security distribution I’'m starting to like better than Kali. Ubuntu is so popular that
many popular Debian derivatives are based directly on Ubuntu, rather than on Debian, for instance Linux Mint
(used in prior iterations of this class), Kubuntu (Ubuntu with the KDE desktop instead of GNOME), Lubuntu
(LXDE/LXQT desktop), Xubuntu (with Xfce), and Ubuntu Budgie (with the Budgie desktop).

Many who use Ubuntu came across it because it used to have the best-looking desktop ... it's always been the
one that was closest to something you could give your parents, or grandparents, to use. Ubuntu used to
develop its own desktop environment, called “Unity,” but has recently dropped it in favor of making its own
additions to the community-developed GNOME desktop environment. | wholeheartedly suggest you try

CS470Lab 4

Ubuntu Desktop on your own time later ... but for this lab, we’ll be using Ubuntu Server, with no graphical
desktop like our minimal Rocky Linux install, to conserve resources.

Unlike Red Hat, there is no free similar distribution (like CentOS was and Rocky and Alma now are for Red Hat)
for free patches ... because patches for Ubuntu are just provided for free; Canonical, the company behind
Ubuntu simply chooses not to tie downloads to you signing in, or to tie patches and updates to paid support ...
Red Hat wants you to pay for that. If you want Ubuntu, you just download it. If you want support for Ubuntu,
you just pay forit. It’s that easy ... and that’s why people have been flocking to Ubuntu, in droves.

Your Ubuntu VM is going to be your lab network’s web server. We’re not going to design any websites here,
but HTTP has long since grown past merely serving up websites, and is arguably the most-used protocol on the
internet, for websites, for applications, the file service, for APIs. In order to spare you the mundane ease with
which one can typically set up a web server today, we’re going to take this opportunity to both introduce a
layer of abstraction and to introduce a new technology, Docker. We'll run our web server inside Docker.

The idea behind Docker is a simple but powerful one: virtual machines are great for a lot of things, especially
for creating a logical layer of separation between applications. They can also be very wasteful, though. For
each virtualized server instance, we typically install a whole copy of an operating system each time, at a cost
of anywhere from 1 to 10 GB of storage for each operating system instance. We also consume the memory
(RAM) involved with running that additional operating system instance for each virtual machine. On top of
that, additional storage, memory, and CPU are consumed emulating virtual hardware for each virtual instance.

Docker calls its instances “containers,” and uses a very minimalist approach, bordering on extreme para-
virtualization. Containers share services and resources and network stacks with a host operating system
wherever possible, and this reduces the footprint inside each container’s filesystems to just the base libraries
and files required by the service running in each container. Wherever it makes sense, files or data to be
served by containers are mounted into each container from the host computer’s filesystems.

The result is profound; though we lose a lot of the logical separation provided by full-blown virtual machines,
we get tremendous resource savings, because all of our service units are just the size of the service, with a
much thinner logical layer of separation. If we need to add in common data files, we can “map” folders with
common service data, into multiple containers if needed, and either ramp up a fleet to scale, or just provide a
thin logical layer of separation and abstractions between separate services in our server fleet.

Docker gives you a great, economical way to cloud-host a lean-as-possible service instance, and to separate
the services within that system from one another, by more than just filesystem access controls.

Since we showed you how to build a BSD kernel in lab 1, we’ll also be building a Linux kernel from source in
this lab ... there are lots of reasons you might end up having to do this in field, so might as well get some
practice in now. Compiling the Linux kernel requires a lot of RAM in this VM, so much so that this side quest is
what put the class past supporting hosts with 8 GB of RAM. Your lab 4 VM will initially be configured with 8
GB of RAM ... the Linux kernel will fail to build with less. We will peel back those resources

CS470Lab 4

part zero: get it

Go to www.ubuntu.com and click the “Download Ubuntu” menu along the top bar, then click “Server,” then

“Get Ubuntu Server.” Those with Intel CPUs and VMware hypervisors can click on “Get Ubuntu Server,” then
“Download 24.04.2 LTS.” Those with ARM Macs should click on “alternative architectures,” then “Download
24.04.2 LTS.”

The download for Intel CPUs is 3.0 GB; the download for ARM CPUs is 2.7 GB. LTS stands for “long-term
support.” Amongst major releases of the operating system, those releases tagged “LTS” target stability, and
Ubuntu will sell support for these releases for up to ten years, depending upon how you pay for it. Ubuntu
versions not tagged with LTS at the end are development releases with shorter life spans.

part one: install it
Create a new custom VM on your shared VM network, using the following specifications:

e guest OS:
o Intel/VMware: Ubuntu 64-bit
o ARM/UTM: virtualize/Linux
e CPU: two virtual cores or processors
one processor, two cores if you’re on VMware Workstation
e boot firmware: UEFI
e RAM: 8 GB (8192 MB)
e hard disk: 16 GB

As before, those of you in UTM will want to make sure you’re not using a GPU-supported virtual graphics card.
Whereas the graphics card used to give us little difficulties in any operating system, it was just recently flaky in
Rocky Linux, and even more so here with Ubuntu while we were updating this lab 4. Since we don’t care
about graphics anyways, those of you in UTM can side-step a virtual display entirely and use a virtual serial
console for this VM. If you edit your VM, under devices, select the display and remove it. Then hit “new”
under devices, and select to create a new serial device. All the defaults will be fine, and you’ll have a much
less flaky way of interacting with your VM.

Those of you in VMware, please de-select “Easy Install.” The installation of Linux, and Ubuntu especially, are
easy enough, and we don’t want to hide from the details here ... especially when VMware's “Easy Install” just
seems to make things hard. When the installer window comes up, if you’ve done Debian Linux before, you
might recognize similarities.

The text-based version of Ubuntu's installer, included with their server ISOs, is similar in design and spirit to
FreeBSD's text-drawn menus installer. Just like there, you'll be using the space bar and return keys to select

things, and the arrow keys and tab to navigate between text-based Ul elements.

1. As always, select your language and keyboard layout.

http://www.ubuntu.com/

CS470Lab 4

After language selection, the Ubuntu installer will sometimes offer to update itself. While Ubuntu’s
distributions are generally pretty solid, their installer has been hideously unstable at times ... | suspect
this is why they developed a post-boot online installer update feature. This installer update feature
often used to crash on me, but it hasn’t failed on me in a couple of years now. If it fails for you, just
reboot from the installation media (the ISO) and try the installation again, without letting it update.

If you don't get the offer to update your installer, don't worry. You can just skip this step.

2. The next screen prompts us to “choose type of install” ... let's do an Ubuntu Server, not minimized. It

still has a fairly small footprint.

3. Network setup is next; just like with the last two systems we set up, we know our network details and
we're going to set a static IP right here in the installer. Choose your VM's only network interface with
the return or space key, then choose to edit IPv4, and change from automatic configuration to manual.

In the subnet field, the installer expects the network address of your VMware NAT subnet, in CIDR
notation. This is the .0 reserved “network” address on that subnet, followed by “/24,” relating the
netmask and thus the size of the subnet. Mine is 10.42.77.0/24.

For address, remember your Ubuntu system is .74 on your VMware subnet. The gateway is whatever
you discovered way back in lab 1, as usual. For the name server, provide the IP address of your
OpenBSD VM, and cs470.internal as the only search domain.

o000 I B ¥} > B ubuntu.cs470.internal

Network configuration [Help 1

Edit ens33 IPv4 configuration

IPv4 Method: [Manual v
I 10.42. 77.0/24

I 10.42.77.74

1 77
EEVCITEIVE 10,42, 77.2
1 77

Name : 0.42.77.71

Search domains: ES4TF0NIRTERAEL

4. Proxy?! We don’t need no stinkin' proxy! Proxy servers are generally only required on the most
security-conscious networks, where network operators care to inspect all inbound and outbound

CS470Lab 4

traffic. That doesn’t apply to us ... we’re directly connected to the internet, so leave it blank.
On the mirror selection screen, the default archive mirror is fine, or whichever mirror it provides.

On the storage configuration screens, start by selecting “custom storage layout.” As before with Rocky
Linux, | recommend you avoid LVM like the plague unless you’re on physical hardware where you can
actually make good use of it. Inside a VM, LVM is an unnecessary layer of abstraction.

You should only have one disk option under “available devices,” probably /dev/sda on Intel and
/dev/vda on ARM. Just like in BSD, the first letters sd (SCSI disk) or vd (VirtlO disk) is the device type
and type. Linux uses letters for the device instances ... a means the first disk, b the second and so on,
and partitions, as in Rocky, will be numbered. Select that disk device, whichever it is, and first, choose
to use it as the boot device. You should see it create an EFl system partition (“ESP”). By default, it
created a 768 MB ESP partition for me ... if it does the same for you, edit it and reduce it to 256 MB.

Select the disk again, its free space area, and choose to add a GPT partition. Make a 14 GB root
filesystem, with the ext4 filesystem. Completing the setup of the root filesystem by selecting “create”
will return you to the screen where you selected to create the root filesystem on /dev/sda. It should
show that right under 2 GB remain available (mine said 1.748G).

Select that free space area again, and create a swap petition with all remaining space.

o000 I [¥ > B ubuntu.cs470.internal

Storage configuration [Help 1

1 SUMMARY

Your disk setup should look similar to the screenshot above. Once you’re content with your disk setup,
choose “done.” It’s going to ask you to confirm whether you want to take destructive actions ...

CS470Lab 4

remember that your VM’s hard disk is just a virtual disk in a file on your computer, and you can
“continue” without hesitation.

The Ubuntu installer will then go to the “profile setup” screen, where it’ll ask you to set up a user.
Create a user named failsafe, as always, and use ubuntu as your server’s name.

The below screenshot is from the installer from 22.04.3, before somebody removed the apostrophe,
correctly indicating ownership, from “your server’s name.” Both the ARM64 and AMD64 installers for
22.04.4 and 24.04 have the apostrophe incorrectly removed.

ubuntu.cs470.local

[Help]

se to log in to the system u can config s on the next screen but a
failsafe user
name:
The name it uses when it talks to other computers.

Pick a username: LERSEEME

HOAHAK
Confirm your password: SRR

After you hit “done” on this screen, take a pass on Ubuntu Pro if offered it ... please, however, feel free
to look into it and opt in later if you please. On the following screen, please DO select to install
OpenSSH server on the “SSH Setup” screen. Do NOT select to import an SSH identity. After you hit
“done” on the SSH setup screen, you get “featured server snaps.” Take a pass, go straight to “done.”

Hitting “done” starts the installation, and the top of the screen soon said “install complete!” but the
installer was still runing “curtin” operations for a few minutes to install updates ... hmmmm. | do not
think complete means what they think it means! They haven’t learned their lesson about when to
correctly use an apostrophe, but hopefully they’ve learned their lesson about fighting a land war in
Asia, or going in against Sicilians when death is on the line.

After a couple minutes, | got the option to “reboot now,” and | took it ... you should too.

The installer, as a parting gift, asked me to remove the installation medium (again, this is the . iso file
in the VM's virtual optical drive that it is referring to) and press enter or return to reboot. Make sure

6

CS470Lab 4

the . iso file is “disconnected” from the virtual optical drive in your VM, and hit return. This is one of
the few changes that you can make to the VM while it’s turned on ... because we’re simply ejecting a
CD-ROM from the computer.

Hang on to your Ubuntu ISO. We'll be using it again in lab 8.
After the reboot, you’ll get a login prompt.
If the login prompt is buried on screen under a bunch of final, first-boot setup stuff, like generating a

host key pair for the VM’s SSH service, don’t worry. If you hit the carriage return key after it stops
doing things — my VM stopped after it reached the cloud-init target —you’ll get a fresh login prompt.

o0 I B X} > [B ubuntu.cs470.internal

Ubuntu 24.04.2 tu ttyl
u1~24.04.2 running ' > Ma S 05:10:30 +0000. U

HERRRRRRR R RRRRRRRRRAR

25H4 TZAPBHKWTE

Note that you set no root password ... on Ubuntu, like on macOS, and a lot of OSs these days, the root
account is typically locked as a consquence of not setting a password ... no password will work to log
you in. You are expected to use sudo whenever you want to flex your admin rights here.

Also note, Ubuntu uses the same, standard GNU/GPL userland implementations of shutdown, reboot,
and poweroff ... and at this point in time, | shouldn’t have to remind you when and how to use them.

Remember what | said about Ubuntu being descended from Debian Linux? Take a moment after you
log in to check out the contents of the file /etc/os-release, especially the variable 1D_LIKE, and see
how you would identify Ubuntu if you were building something on top of it. Please also take a look at
man os-release, especially if you're wondering what any of this stuff is actually intended for.

CS470Lab 4

part two: additional configuration and installations

10. Ubuntu historically used the file /etc/network/interfaces to configure its network(s) ... but that file,
and its backing subsystems, have been deprecated since Ubuntu 18.04 in favor of the super-duper-
mega-overengineered netplan. netplan initially stored its configurations in the folder /etc/netplan,
but now it even use other network configuration “renderers” like NetworkManager for an additional
layer of abstraction when setting up the network. Because the Ubuntu installer detected we were
running under VMware, it bundled the network configuration along with —and named it after—a
common suite of cloud instance initialization scripts, cloud-init. Which you might have seen littering
up your Ubuntu VM'’s console after the first boot, or could see in my screenshots from Ubuntu 22.04.

Like a lot of things in life, cloud-init and netplan are really intrusive, under the guise of trying to be
helpful and prevent “harm.”

It’s for this reason | want you to see how the network is statically configured on your Ubuntu VM.

$ sudo more /etc/netplan/50-cloud-init.yaml

Mine has the following contents.

network:
version: 2
ethernets:
ens33:
addresses:
- ”710.42.77.74/24"
nameservers:
addresses:
-10.42.77.71
search:
- ¢cs470.internal
routes:
- to: “"default”
via: ”10.42.77.2"

Unless your network is broken, you don’t have to take any action the rest of this step.

If you ever have to change it, save it out, and tell netplan to generate the necessary configuration ...

$ sudo netplan generate

... and then apply it.

$ sudo netplan apply

Linux distributions, increasingly, are moving away from ifconfig towards ip. To check out your
network configuration, try the command ip a ... asinlab 1, if you can’t ping your gateway, you got
one of the IP addresses wrong. If you can’t ping outside your gateway (say 4.2.2.2), you got your
gateway IP wrong, probably. If you can’t look up names, or ping you probably got your nameserver

CS470Lab 4

11.

12.

13.

wrong, or it’s just not working correctly.

Ordinarily, we’d set up SSH key-based authentication here. Instead, we’re going to set up the NFS
client on this VM instead, and get our SSH directory — and the entirety of /home from the NFS server on
the Rocky VM —and we won’t have to copy over our SSH public key. In order to do that, we need to
initialize Ubuntu’s package management system, apt:

$ sudo apt update

You should see apt go out and grab the lists of the latest packages from Ubuntu’s repository, probably
the same “repo” as set up during the installation, and finish with something like ...

50 packages can be upgraded. Run ‘apt list --upgradable’ to see them.

.. only we don’t care about that yet. We want NFS first.

$ sudo apt install nfs-common

apt will tell you that it’s going to download and install precisely which packages, once it calculates all
of the dependencies for nfs - common, and ask for your confirmation to proceed. After it’s done
installing, you should be able to mount the NFS shares of /home and /srv/nfs from your Rocky VM.
First, cd out of /home ...

$ cd /

.. and then manually mount it ...

$ sudo mount rocky:/home /home

.. make the mount point for /srv/nfs and mount it too.

$ sudo mkdir /srv/nfs
$ sudo mount rocky:/srv/nfs /srv/nfs

.. running the mount and/or df commands should confirm that it’s properly mounted. If it’s not, you
goofed something up above this — there’s not much of it yet — and should backtrack.

You should now be able to SSH into your Ubuntu VM without using a password, using key-based
authentication, as your public key is in place (~/ . ssh/authorized_keys) thanks to the NFS mount.
Test it. Loginto your Ubuntu VM over SSH ... you may have to accept its SSH host key, as it is a new
SSH server to your client, but it should not ask for a password. If it does, you missed something.

Having the same home directory everywhere is the way home directories should be; let's make our
NFS mounts permanent. Use vi to add the following lines to /etc/fstab on your Ubuntu VM:

rocky:/home /home nfs defaults 0 O
rocky:/srv/nfs /srv/nfs nfs defaults 0 0

CS470Lab 4

14.

15.

16.

Check twice for typos — remember, a problem mounting any filesystem listed in /etc/fstab will cause
your system to fail to fully boot up. Test it out by rebooting your VM; if you’re going to have to go into
recovery mode, better now when expected over later and as a surprise.

Once you get your VM back from the reboot, let’s take a couple minutes to install packages used later
by your instructor for grading purposes: csh (via tcsh), GNU binutils, and net-tools.

$ sudo apt -y install tcsh binutils net-tools

It’s time for network time! Ordinarily we’d go for ntpd and ntpdate but systemd comes with a new
NTP client, and we don’t need to do anything to turn it on.

$ systemctl status systemd-timesyncd

If it doesn’t report that it’s running and active, you should know what to do, given that it’s integrated
with systemd ... and be able to check that it’s running another way:

$ ps auxww | grep timesyncd | grep -v grep

The -v switch with grep excludes, instead of matches lines, so we’re making sure we only see a line if
there’s an timesyncd process, not a line for our grep process trying to find it.

Next, mail and mail forwarding ... Ubuntu appears to come with no built-in mail subsystem. This
command returned no output.

$ which mail

This command also returned no output ...

$ which sendmail
... and most mail servers offer a sendmail command, for historical reasons.
$ apt list --installed | grep -i mail

This command also returned no useful output, just a warning about how the command line interface
(CLI) for apt is in flux, and to be careful using it in scripts. So, let’s install post fix; it’s way easier to
configure than sendmail.

$ sudo apt install postfix
After confirming you want to install postfix, you’ll be greeted with a FreeBSD-looking text-based

menu dialog asking which of configuration template you want. It used to look like the screenshot
below, with descriptions of each configuration.

10

CS470Lab 4

[] failsafe@ubuntu: [— ttys005 — X6
failsafe@ubuntu: / — ssh failsafe@ubuntu — ttys005

Package configuration

Postfix Configuration }

Please select the mail server configuration type that best meets your needs.

No configuration:

Should be chosen to leave the current configuration unchanged.
Internet site:

Mail is sent and received directly using SMIP.

Internet with smarthost:

Mail is received directly using SMIP or by running a utility such
as fetchmail. Outgoing mail is sent using a smarthost.

Satellite system:

All mail is sent to another machine, called a ’smarthost’, for
delivery.

Local only:

The only delivered mail is the mail for local users. There is no
network.

<Ok >,

Choose “internet site” and specify ubuntu.cs470.internal as the system mail name.

In the middle of the output that follows, you should see something like this ...

Setting up postfix (3.8.6-1build2) ...

info: Selecting GID from range 100 to 999
info: Adding group "postfix’ (GID 111) ..
info: Selecting UID from range 100 to 999

info: Adding system user ‘postfix’ (UID 112) .

info: Adding new user "postfix’ (UID 112) with group "postfix’
info: Not creating home directory °/var/spool/postfix’.
Creating /etc/postfix/dynamicmaps.cf

info: Selecting GID from range 100 to 999

info: Adding group "postdrop’ (GID 112)

setting myhostname: ubuntu.cs470.internal

setting alias maps

setting alias database

changing /etc/mailname to ubuntu.cs470.internal

setting myorigin

setting destinations: $myhostname, ubuntu.cs470.internal, ubuntu,
localhost.localdomain, localhost

setting relayhost:

setting mynetworks: 127.0.0.0/8 [::ffff:127.0.0.01/104 [::11/128
setting mailbox_size_limit: O

setting recipient_delimiter: +

setting inet_interfaces: all

setting inet_protocols: all

/etc/aliases does not exist, creating it.

WARNING: /etc/aliases exists, but does not have a root alias.

Postfix (main.cf) is now set up with a default configuration. If you need to
make changes, edit /etc/postfix/main.cf (and others) as needed. To view
Postfix configuration values, see postconf(1).

After modifying main.cf, be sure to run ’'systemctl reload postfix’.

Running newaliases

11

CS470Lab 4

17.

Created symlink /etc/systemd/system/multi-user.target.wants/postfix.service -
/usr/lib/systemd/system/postfix.service.

As you can see, the package post-installation script automates a lot of the postfix configuration we did
manually in lab 3. It makes a new separate user, called postfix, to use when running the postfix
mail server. If you use ps auxww and filter output to match postfix, you should see that it’s running
already. Now, as the installation messages suggest, we need to edit /etc/aliases. Add the following
line to forward root’s mail ...

root: peter@cs470.internal

... and of course, replace my username with yours, and run newaliases to tell the mail subsystem to
re-process the aliases database.

$ sudo newaliases

Now let’s test our mail configuration. To do that, we need a command-line mailer, but ...

$ which mail

... returns no output. So let’s install apt - file to search the apt database for files included with each
package ...

$ sudo apt -y install apt-file

..apt-file, like apt, needs to be told to build its database ...

$ sudo apt-file update

.. and finally, search formai1l ...

$ apt-file search mail

Wow, that command returns a lot of output! Unsurprising that a lot of packages deal with mail in
some fashion, though ... let’s filter that output a bit by piping it through grep ...

$ apt-file search mail | grep -w mail

... grep With the -w switch only matches output where “mail” is the whole word in each match, not a
part of a larger word. Still not helpful. Maybe matching mail with a space after it? It ended up being
helpful to remember that some implementations of /bin/mail were called mailx ... because going
straight for mai1x helped a ton at reducing noise.

$ apt-file search mailx

bsd-mailx: /usr/bin/bsd-mailx

bsd-mailx: /usr/share/bsd-mailx/mail.help

bsd-mailx: /usr/share/bsd-mailx/mail.tildehelp
bsd-mailx: /usr/share/doc/bsd-mailx/README.Debian.qgz
bsd-mailx: /usr/share/doc/bsd-mailx/changelog.Debian.gz
bsd-mailx: /usr/share/doc/bsd-mailx/copyright

12

CS470Lab 4

18.

19.

bsd-mailx: /usr/share/man/mani/bsd-mailx.1.gz

mailutils-doc: /usr/share/doc/mailutils/mailutils.html/mailx-mail-variable.html
mailutils-mh: /usr/share/mailutils/mh/scan.mailx

manpages-pl: /usr/share/man/pl/man1/bsd-mailx.1.gz

manpages-posix: /usr/share/man/man1/mailx.1posix.gz

mmh: /etc/mmh/scan.mailx

mon: /usr/lib/mon/alert.d/mailxmpp.alert

nmh: /etc/nmh/scan.mailx

Bingo, much better. Looks like bsd-mailx is the droid we’re looking for.
$ sudo apt -y install bsd-mailx

Finally, we have something to test with ...

$ echo "test’ | mail -s test root

... and checking the mail log ...

$ sudo tail /var/log/mail.log

... | saw this ...

2025-03-23T20:56:15.688174+00:00 ubuntu postfix/master[6467]: daemon started --
version 3.8.6, configuration /etc/postfix

2025-03-23T21:16:40.0947594+00:00 ubuntu postfix/pickup[6468]: 16FA741ADD: uid=1000
from=<failsafe>

2025-03-23T21:16:40.1078394+00:00 ubuntu postfix/cleanup[7205]: 16FA741ADD: message-

1d=<20250323211640.16FA741ADD@ubuntu.cs470.internal>
2025-03-23T21:16:40.109818+00:00 ubuntu postfix/gmgr[6469]: 16FA741ADD:
from=<failsafe@ubuntu.cs470.internal>, size=431, nrcpt=1 (queue active)

2025-03-23T21:16:40.125152400:00 ubuntu postfix/cleanup[7205]: 1E6EF41ADE: message-

1d=<20250323211640.16FA741ADD@ubuntu.cs470.internal>
2025-03-23T21:16:40.1277304+00:00 ubuntu postfix/local[7207]: 16FA741ADD:
to=<root@ubuntu.cs470.internal>, orig_to=<root>, relay=local, delay=0.05,
delays=0.03/0.01/0/0, dsn=2.0.0, status=sent (forwarded as 1E6EF41ADE)
2025-03-23T21:16:40.127894400:00 ubuntu postfix/gmgr[6469]: 1E6EF41ADE:
from=<failsafe@ubuntu.cs470.internal>, size=574, nrcpt=1 (queue active)
2025-03-23T21:16:40.127969+00:00 ubuntu postfix/gmgr[6469]: 16FA741ADD: removed
2025-03-23T21:16:40.283466+00:00 ubuntu postfix/smtp[7208]: 1E6EF41ADE:
to=<peter@cs470.internal>, orig_to=<root>,
relay=freebsd.cs470.internal[10.42.77.72]:25, delay=0.16, delays=0/0.04/0.07/0.04,
dsn=2.0.0, status=sent (250 2.0.0 52NLGe37007152 Message accepted for delivery)
2025-03-23T21:16:40.283652+00:00 ubuntu postfix/gmgr[6469]: 1E6EF41ADE: removed

Note the second-to-last line above, which mentions that the mail server on my FreeBSD system
accepted the mail for delivery. This is the desired outcome.

Read this step ... but do not do this step.

Il AGAIN, READ BUT DO NOT DO THIS STEP, UNTIL THE START OF THE NEXT STEP. This step here is only

here for your reading pleasure, to share past lessons learned in case you truly get stuck, to talk about
SMTP smart hosts, and to illustrate a basic sysadmin concept and vocabulary word: “kludge.”

13

CS470Lab 4

In prior years, | was completely unable to get postfix to properly resolve the MX record to cleanly
deliver diagnostic e-mails between VMs, and we had to resort to a “kludge.”

Sometimes you need to send e-mail to the rest of the internet via another system, because network
policy simply won't let you. Although I've thought about using this feature to get mail delivered from
our little .internal domains, no such policy was in place in between our lab VMs. | just couldn't get
postfix to behave.

In other words, often times, using an SMTP "smart host" isn't a kludge. It's necessary. However, in my
case, it was definitely a kludge.

HUdge|k@m‘ﬂjﬁjkmgeedUdgeﬁmme

noun

an ill-assorted collection of parts assembled to fulfill a particular
purpose.

e Computing a machine, system, or program that has been badly
put together.

verb [with object]

use ill-assorted parts to make (something): Hugh had to kludge
something together.

ORIGIN

1960s: invented word, perhaps influenced by bodge and ft

Just in case you hadn’t been exposed to the word “kludge” before ... please be introduced. Not the
solution we want to roll out, but if holds things together until the end of the business day on Friday and
for the weekend, we can fix it later, The Right Way™.

We’re going to set up our FreeBSD VM as a “smart host.” This means that our local host (in this case,
our Ubuntu VM) doesn’t know how to deliver mail, so it’s going to use a system smarter than it ... in
this case, our FreeBSD VM, where we want the mail to go, anyways.

$ sudo vi /etc/postfix/main.cf
Under the section covering the option “relayhost,” add the line ...

relayhost = [freebsd.cs470.internal]
... and, after saving main.cf, tell postfix to reload its configuration ...
$ sudo postfix reload

. GnuPG. Fortunately, this is going to go way quicker than mail ...

$ which gpg
14

CS470Lab 4

/usr/bin/gpg

... because gpg is already installed. The package subsystem uses it to digitally sign packages. Wahoo,
shortest step in a lab, EVAR.

21. Updates. Let’s set up root’s crontab to check for updates every night at midnight ...
$ sudo crontab -e
... and don’t even think of using nano as your editor when you are prompted. Add the following line ...

0 0 * * * apt update && apt list --upgradable

... 'm hoping you can tell what this does, at this point. If not, look it up!

part three: configuring LDAP login
Now let’s get our LDAP directory plugged into our new instance.

I THE WARNINGS FROM LABS 1B AND 2 ABOUT LOCKING YOURSELF OUT OF YOUR VM APPLY AGAIN HERE.

22. Let’s install the software required for LDAP integration.

$ sudo apt -y install libnss-ldapd libpam-ldap ldap-utils

You'll be prompted by the now-familiar package manager dialog asking you how you’d like your LDAP
integration set up, first for ns1cd. First, the URI, 1daps://openbsd.cs470.internal just like the
configuration of our other LDAP clients.

® ttys005 — X %6
ssh failsafe@ubuntu — ttys005

Package configuration

1 Configuring nslcd ¢}
Please enter the Uniform Resource Identifier of the LDAP server. The format is
"ldap://<hostname_or_IP_address>:<port>/". Alternatively, "ldaps://" or "ldapi://" can be
used. The port number is optional.

When using an ldap or ldaps scheme it is recommended to use an IP address to avoid failures
when domain name services are unavailable.

Multiple URIs can be separated by spaces.

LDAP server URI:

<Cancel>

15

CS470Lab 4

Then, of course, provide the search base dc=cs470,dc=internal if it’s not already in there.
If asked to set a policy for certificate validation for ns1cd, choose “demand.”

When asked to choose which name services to tie to LDAP, choose users (passwd) and groups (group).

® ttys005 — "6
ssh failsafe@ubuntu — ttys005
Package configuration

| Configuring libnss-ldapd:amdé4 |
For this package to work, you need to modify the /etc/nsswitch.conf file to use the ldap
datasource.

You can select the services that should have LDAP lookups enabled. The new LDAP lookups will
be added as the last datasource. Be sure to review these changes.

Name services to configure:

passwd
group
shadow
hosts
networks
ethers
protocols
services
rpc
netgroup
aliases

You're also going to be asked to set the same options again for 1dap-auth-config.
When asked which version of the LDAP protocol to use, choose version 3.

Choose <ves> when asked whether to make local root a database admin.

The LDAP database does not require login to search it.

When asked for the LDAP account to be used by root, provide the admin DN from lab 1b, and the
directory admin password on the following screen.

You may be prompted for which services to restart next. Since no other systems or services are
counting on this Ubuntu VM yet, go ahead and allow it to restart whichever services it identifies as
candidates on your instance, if asked.

Ubuntu’s package configuration automation has largely removed the need to edit configuration files;
our Ubuntu VM’s LDAP client is now aimed at our OpenBSD VM’s LDAP server unless you made any
mistakes during data entry. If you need to do any troubleshooting for this step, you can look at the
files /etc/1dap.conf and /etc/nslcd. conf ... or consult the man pages and get them to cough up
how to reconfigure a package.

16

CS470Lab 4

23.

24.

As usual, though, we need to pull over our CA certificate from the OpenBSD VM for the LDAP client.

$ scp -p openbsd:/home/pki/data/cacert.pem ~failsafe

Ubuntu adds certificates to its trust store in a different way than other operating systems. If you look
in the familiar /etc/ss1 directory with 1s -1, you’ll see there’s no cert.pem but inside the certs
directory, you’ll find soft links to CA certificates stored elsewhere on the filesystem.

Ubuntu has a whole tool suite for managing the trust store, and you can find more details here:
https://ubuntu.com/server/docs/security-trust-store

Since our certificate is already in PEM (text-encoded) format, we just need to move it to the correct
directory and end it with .crt ...

$ sudo mv ~failsafe/cacert.pem /usr/local/share/ca-certificates/cs470.internal.crt

... 00ps ... mv wasn’t able to move it ... with sudo ... why not, and why does the following work instead?
You need to understand this.

$ mv ~failsafe/cacert.pem /tmp
$ sudo cp -p /tmp/cacert.pem /etc/ssl/cacert.pem

Note: we're also saving another copy of the root CA certificate to a familiar place, above, while we
move it to Ubuntu’s preferred place, below.

$ sudo mv /tmp/cacert.pem /usr/local/share/ca-certificates/cs470.internal.crt
$ 1ls -la /usr/local/share/ca-certificates/

total 1
drwxr-xr-x 2 root root 4096 Mar 23 22:08
drwxr-xr-x 7 root root 4096 Mar 12 04:53

“rw-rw-r-- 1 failsafe failsafe 7091 Feb 8 20:51 cs470.internal.crt

Let’s hope it being owned by failsafe isn’t a problem, and tell Ubuntu to re-parse its cache of CA
certificates.

$ sudo update-ca-certificates

Both my Ubuntu VMs said 1 added as a part of that command’s output ... not a problem. Fix it
anyways!

$ sudo chown root:root /etc/ssl/cacert.pem
$ sudo chown root:root /usr/local/share/ca-certificates/cs470.internal.crt
$ sudo chmod 644 /etc/ssl/cacert.pem /usr/local/share/ca-certificates/cs470.internal.crt

Now our Ubuntu VM’s local LDAP client should be able to trust the certificate handed to it by the LDAP
server on our OpenBSD VMs, and thus trust the service too.

Set up /etc/ldap/ldap.conf as is appropriate for your LDAP server. You’ve seen this file, the
OpenlLDAP client configuration file, before. You know what to do here. Do it.

17

https://ubuntu.com/server/docs/security-trust-store

CS470Lab 4

25. Check the file /etc/nsswitch.conf on your new Ubuntu VM, and make sure 1dap is at the end of the
passwd and group lines, and test.

At this point in time, your LDAP user should resolve with id and the output of 1s -1 /home should
show names, not numbers, for all users and groups associated with each folder.

26. Ubuntu, like upstream Debian, uses a group called “sudo” to grant sudo rights; the installer added our
failsafe user to this group. Add your LDAP user to the sudo group in /etc/group too.

27. Create a symbolic link for bash.

$ sudo 1ln -s /bin/bash /usr/local/bin/bash

...and add /usr/local/bin/bash to the list of acceptable shellsin /etc/shells.
28. Test LDAP authentication!

Test logging into the console of your VM, in its VMware window, as both your failsafe local user and
your LDAP user. You can disable key-based authentication at the client side by doing this ...

$ ssh -o PreferredAuthentications=password -o PubkeyAuthentication=no peter@ubuntu

Try logging in via SSH as both users, with passwords and with SSH keys. Make sure both authentication
methods work, for both users.

Test using sudo as your LDAP user. Note, again, that you can just use sudo to run 1s to test that it
works, even though you don’t need rootly powers to run 1s.

Go ahead and add a line to /etc/sudoers for your LDAP sudoers group too.

Once you're sure it works, as usual, abandon the failsafe account. It’s only to fix things when needed.

part four: web server, containerized with Docker

We already talked about what we’re doing here and why, in plenty of detail during the preamble for this lab,
so let’s jump right in.

29. First, let’s install docker and its container authoring tool, docker - compose.

$ sudo apt install docker.io docker-compose-v2

Note that as a part of the truncated output below, docker is being set up with a sandbox group
account, and is being registered with systemd as a service.

Setting up docker.io (26.1.3-0Oubuntul~24.04.1)
info: Selecting GID from range 100 to 999

18

CS470Lab 4

30.

info: Adding group "docker’ (GID 114)

Created symlink /etc/systemd/system/multi-user.target.wants/docker.service -
/usr/lib/systemd/system/docker.service.

Created symlink /etc/systemd/system/sockets.target.wants/docker.socket —
/usr/lib/systemd/system/docker.socket.

docker itself can be used to grab stock application containers from the Docker Hub
(https://hub.docker.com), and from arbitrary repositories. The web server we’ll be using in this lab,
nginx, is one of, if not the most popular out there. As such, it’s available as a container from the
default repository hosted by the Docker project itself.

Now let’s grab the docker container we’re actually going to be running.

$ sudo docker pull nginx

Using default tag: latest

latest: Pulling from library/nginx
6€909acdb790: Pull complete

5eaa34f5b9c2: Pull complete

417c4bcctb34: Pull complete

e7e0cal15e55: Pull complete

373fe654e984: Pull complete

97£5c0£51d43: Pull complete

c22eb46e871a: Pull complete

Digest: sha256:124b44bfc9ccdl1f3cedf4b592d4d1e8bddb78b51ec2ed50566c52d3692baebc19
Status: Downloaded newer image for nginx:latest
docker.io/library/nginx:latest

Let’s fire up the container. In the command below, -p 80:80 tells docker to map port 80 of our host
system (the Ubuntu VM) to port 80 inside the container. This allows the nginx service inside the
container to answer HTTP requests on TCP port 80 destined for our Ubuntu VM’s primary network
interface and IP address.

$ sudo docker run -p 80:80 -d nginx

If you (and I) did everything correctly to this point, the docker command will return a long
hexadeximal identifier for the container you just started up, and you should be able to go to the
following URL ...

http://ubuntu.cs470.internal/

... and when it loads it, you should see a webpage welcoming you to the nginx web server.

19

https://hub.docker.com/
http://ubuntu.cs470.internal/

CS470Lab 4

31.

32.

33.

ee @M ubuntu.cs470.internal

Private @ welcome to nginx!

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Bookmarks
Reading List
Shared with You

You have a lightweight VM inside a VM now, and that VM-in-a-VM is a web server. Pretty cool, huh?

Using sudo every time we want to run docker commands will get old; if you add failsafe and your
LDAP accounts to the docker group, you won’t have to use sudo anymore. Remember, you have to log
out and then back in to get new group IDs attached to your security context.

If you try to use docker without sudo before logging out and back in, you’ll see an error message
saying permission was denied to /var/run/docker.sock ... filesystem permissions (use 1s -1) are
how this is enforced.

In order to see all the containers you have running, the docker command has a complete syntax of
subcommands underneath it, and docker ps will, like the command ps, show you a list of running
things.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

2abf8e2072df nginx ”/docker-entrypoint...” 24 minutes ago Up 24 minutes
0.0.0.0:80->80/tcp, :::80->80/tcp stoic_bouman

Note that docker ps gives you not only the important handle for the container, in a shorter form of its
container ID, but shows ports mapped into the containers.

Let’s stop the container now, so that we can do some reconfiguration ...

$ docker stop 2abf8e2072df

... it will echo back the container ID, presumably because you can provide the docker command
multiple container IDs on a single line, if you’re doing the same operation (stop/start/whatever).

Also note that now, if you reload that page in your browser, it will either throw an error right away, or

20

CS470Lab 4

34.

35.

time out and then throw an error. The web service is no longer running, not answering anymore.

In order to bend the configuration of nginx to meet our needs, we’ll need a copy of its configuration
files. The easiest way to get those configuration files? Let’s grab the nginx package for Ubuntu.

$ sudo apt install nginx

As we’ve seen before, installing service packages often enables and starts them, so let’s make sure to
stop and disable the copy of nginx we just installed on our Ubuntu VM.

$ sudo systemctl stop nginx
$ sudo systemctl disable nginx

Next let’s make a certificate for our new webserver. All web traffic, unless we know all content is not
sensitive.

As before, the first thing we want to do is to import our organizational settings for our key
infrastructure. Copy the OpenSSL configuration file over to this system from our OpenBSD VM.

$ scp -p openbsd:/etc/ssl/openssl.cnf /tmp/openssl.cnf

Just like we last did with FreeBSD, move Ubuntu’s default OpenSSL configuration file out of the way.
$ sudo mv /etc/ssl/openssl.cnf /etc/ssl/openssl.cnf.orig

Now, move the file from OpenBSD into its place, and fix permissions just like before.

$ sudo mv /tmp/openssl.cnf /etc/ssl/openssl.cnf
$ sudo chown root:root /etc/ssl/openssl.cnf

Finally, also just like we did in lab 2, edit the file, and change the hostname at the very end to

ubuntu.cs470.internal.

Make a directory for storing encryption key material ... note: we’re leaving this group-read/executable
for a reason.

$ sudo mkdir -m 750 /etc/nginx/ssl

... generate a key ...

$ sudo openssl genrsa -out /etc/nginx/ssl/ubuntu.key 3072
... and then generate a certificate request.

$ sudo openssl req -new -key /etc/nginx/ssl/ubuntu.key -out /etc/nginx/ssl/ubuntu.csr

You should recognize the next steps ... no locality name. For the common name, use
ubuntu.cs470.internal and root@cs470.internal as the e-mail address. Once the CSR is done,

21

mailto:root@cs470.local

CS470Lab 4

36.

copy it over to OpenBSD for the CA to sign it. We do the two-step dance below because using ssh as
root is frowned on for security reasons —don’t run around as root if you don’t have to.

$ sudo cp -p /etc/nginx/ssl/ubuntu.csr /tmp/ubuntu.csr
$ scp -p /tmp/ubuntu.csr openbsd:/home/pki/newreq.pem

Log back into OpenBSD as failsafe and sign the CSR.

$ cd /home/pki && CA.pl -sign

As always, double-check all the information provided before typing v to sign the certificate ... especially
the hostname. Then copy it back to Ubuntu.

$ scp -p newcert.pem ubuntu:/tmp/ubuntu.pem

Again, clean up the new cert and CSR here on OpenBSD. Then back on Ubuntu, remove the CSR from
/tmp and slide the certificate into place ...

$ sudo mv /tmp/ubuntu.pem /etc/nginx/ssl/ubuntu.pem

Set its permissions properly. Note: Red Hat and its derivatives use the BSD-derived wheel group here.
Ubuntu doesn’t have a direct equivalent. The sudo or adm groups would be the closest thing, if we
were trying to keep system administrators in mind. Here, we’re not. Encryption keys should belong to
root and root alone.

$ sudo chown root:root /etc/nginx/ssl/ubuntu.pem
Let’s configure the web server.

Take a moment and check out the tree of configuration files under /etc/nginx.

$ 1s -1 /etc/nginx/

total 1

drwxr-xr-x 2 root root 4096 Sep 10 2024 conf.d
-rw-r--r-- 1 root root 1125 Nov 30 2023 fastcgi.conf
-rw-r--r-- 1 root root 1055 Nov 30 2023 fastcgi_params
-rw-r--r-- 1 root root 2837 Nov 30 2023 koi-utf
-rw-r--r-- 1 root root 2223 Nov 30 2023 koi-win
-rw-r--r-- 1 root root 5465 Nov 30 2023 mime.types
drwxr-xr-x 2 root root 4096 Sep 10 2024 modules-available
drwxr-xr-x 2 root root 4096 Sep 10 2024 modules-enabled
-rw-r--r-- 1 root root 1446 Nov 30 2023 nginx.conf
-rw-r--r-- 1 root root 180 Nov 30 2023 proxy_params
-rw-r--r-- 1 root root 636 Nov 30 2023 scgi_params
drwxr-xr-x 2 root root 4096 Mar 24 18:20 sites-available
drwxr-xr-x 2 root root 4096 Mar 24 18:20 sites-enabled
drwxr-xr-x 2 root root 4096 Mar 24 18:20 snippets
drwxr-x--- 2 root root 4096 Mar 25 03:22 ssl

-rw-r--r-- 1 root root 664 Nov 30 2023 uwsgi_params
-rw-r--r-- 1 root root 3071 Nov 30 2023 win-utf

There’s a conf . d directory for modular configuration files. There are a few files for CGl (Common
Gateway Interface, a way for external code to interact with web sites). There are a pair of directories

22

CS470Lab 4

each for web server modules and for web sites, one each for “available” sites and modules, and one
each for “enabled” sites and modules. The idea here is that all sites and modules are in the “available”
directories, and you symlink to files in the “enabled” directories with those modules and sites you want
enabled. The master nginx.conf file refers to files under conf . d and the two “enabled” folders.

To customize the configuration of nginx, the file we're afteris /etc/nginx/sites-enabled/default.
First, let’s also add our certificate into the configuration .. comment out both the first 1isten line for
port 80 as well as the second 1isten line that listens for port 80 on IPv6 (with the colons). Then,
uncomment the listen line for port 443, but NOT the second line that listens for port 443 on IPv6. Just
after that stanza, add the following:

ssl_protocols TLSv1.2;
ssl_certificate /etc/nginx/ssl/ubuntu.pem;
ssl_certificate_key /etc/nginx/ssl/ubuntu.key;

The first part of the file should look like the screenshot below. Note the option root; this denotes the
root of documents to be served up by the file server, and will be important later.

[] ttys005 — 386

ssh ubuntu —...

#

server {
#listen 80 default_server;
#listen [::1:80 default_server;

SSL configuration

#

listen 443 ssl default_server;

listen [::1:443 ssl default_server;

#

Note: You should disable gzip for SSL traffic.
See: https://bugs.debian.org/773332

Read up on ssl_ciphers to ensure a secure configuration.
See: https://bugs.debian.org/765782
S
D

elf signed certs generated by the ssl-cert package
on’t use them in a production server!

#
#
#
#
#
#
#
#

include snippets/snakeoil.conf;
ssl_protocols TLSv1.2;

ssl_certificate /etc/nginx/ssl/ubuntu.pem;
ssl_certificate_key /etc/nginx/ssl/ubuntu.key;

root /var/www/html;

Add index.php to the list if you are using PHP

Go down a little within the file and change server_name to ubuntu.cs470.internal.
We want to add the option to autoindex folders to the root location of the web server and to give

them proper download links by HTML-formatting the folder for our web browser. After you make
these changes, you can save out the file. The second part of the edits are in the screenshot below.

23

CS470Lab 4

Read up on ssl_ciphers to ensure a secure configuration.
See: https://bugs.debian.org/765782

Self signed certs generated by the ssl-cert package
Don’t use them in a production server!

include snippets/snakeoil.conf;

ssl_protocols TLSv1.2;
ssl_certificate /etc/nginx/ssl/ubuntu.pem;
ssl_certificate_key /etc/nginx/ssl/ubuntu.key;

root /var/www/html;

Add index.php to the list if you are using PHP
index index.html index.htm index.nginx-debian.html;

server_name ubuntu.cs470.internal;

location / {
First attempt to serve request as file, then
as directory, then fall back to displaying a 404.
try_files $uri $uri/ =404;
autoindex onj
autoindex_format html;

H

pass PHP scripts to FastCGI server

37. In this step, we lay out all the content we expect our containerized web server to display. To the
container, it’s all underneath the folder /var/www/html, the default location for web content under
nginx. Outside the container, we’re going to map host directories to that path inside the container,
and we’re going to continue to use the the /srv tree for local service data.

Make a copy of the default nginx website to /srv/www.

$ sudo cp -pr /var/www/html /srv/www

It’s very common to have a group for people with permissions to change web content; Ubuntu has one
built-in ...

$ grep www /etc/group
www-data:x:33:

... many OSs make this group ID 80, to match the default port 80 for HTTP. Ubuntu strangely doesn’t
configure the web root to be group readable ...

$ 1s -1d /var/www/html /srv/www
drwxr-xr-x 2 root root 4096 Mar 24 18:20 /srv/www
drwxr-xr-x 2 root root 4096 Mar 24 18:20 /var/www/html

... s0 let’s fix that on our newly-minted web root directory, and make it group-writable. Here, you can
see another convenience of /srv ... /srv/www is far easier than /var/www/html, and doesn’t create a
need for web developers to go into /var if you don’t want them in there.

$ sudo chgrp www-data /srv/www
$ sudo chmod g+w /srv/www

24

CS470Lab 4

38.

Add your LDAP user to the www-data group.

In lab three, we created /srv/nfs with wide-open permissions so that any user on any of our NFS
clients (every VM except our OpenBSD name server) could use the disk space on our file server. Not
only are we going to make the default nginx website available via the web server, we’re also going to
use nginx to make the content in /srv/nfs accessible via the web server. Make a mount point
directory for that content. If you log out and back in quickly, you shouldn’t have to use sudo.

$ mkdir /srv/www/nfs

With all that in place, we’re going to restart the container, this time with encrypted HTTP (HTTPS)
available on the standard port 443 instead of cleartext HTTP on port 80, with our host Ubuntu system’s
/etc/nginx in place of the container’s default nginx configuration directory, /srv/www in place of
/var/www/html, and /srv/nfs at /var/www/html/nfs.

$ docker run -p 443:443 -v /etc/nginx:/etc/nginx:ro -v /srv/www:/var/www/html:ro -v
/srv/nfs:/var/www/html/nfs:ro -d nginx

If you did everything correctly, you should now be able to load the website in your browser using
HTTPS now — https://ubuntu.cs470.internal/ — and see the default nginx welcome page again. If you
add go to https://ubuntu.cs470.internal/nfs you should see the list of files in /srv/nfs ... listed in your
browser. If this didn’t work, try removing the -d flag and looking at the output.

Il'If you get a certificate warning here in your browser, you messed something up or missed a step.
Make some files in /srv/nfs and refresh your web browser tab or window.

We'll be using this again shortly, but take a step back and look at what we’re doing here ... we’re using
Docker on Ubuntu and nginx to serve up files from our Rocky VM to web browser clients, over an
encrypted channel with the trust chain created on our OpenBSD VM. We’re starting to pull it all
together here.

Pat yourself on the back, and then stop your nginx container.

Now let’s make sure our Docker containers start when our Ubuntu VM starts. First, we need to enable
docker as a service:

$ sudo systemctl enable docker
$ sudo systemctl start docker

Next, let’s create our containers the right way using docker - compose. docker-compose (note the
hyphen) used to be a standalone program, but it has since been integrated as a subcommand of
docker (hence the removal of the hyphen). It allows us to store a container configuration — even
configurations for multiple containers —as a YAML file that will make more complicated configurations
easier to troubleshoot. Use sudo and vi to create and edit a file /etc/docker/nginx.yml with the
following contents:

25

https://ubuntu.cs470.internal/
https://ubuntu.cs470.internal/nfs

CS470Lab 4

version: ‘3.1’

services:
nginx:

image: nginx

container_name: nginx

restart: always

networks:
- cs470

ports:
- 443:443

volumes:
- /etc/nginx:/etc/nginx:ro
- /srv/www:/var/www/html:ro
- /srv/nfs:/var/www/html/nfs:ro

networks:
cs470:

Heads up: YAML files are very rigid about spacing and indentation, all the more reason for monospaced
fonts. If you have problems here, that'll likely be the cause. We’ll be playing with them more in lab 5.

Next, we need to create a custom systemctl service unit to start up our nginx container, at

/etc/systemd/system/docker-nginx.service ...

[Unit]

Description=nginx docker container
Requires=docker.service
After=docker.service

[Service]

Restart=always

ExecStart=/usr/bin/docker compose -f /etc/docker/nginx.yml up
ExecStop=/usr/bin/docker compose -f /etc/docker/nginx.yml down
[Install]

WantedBy=default.target

Now, we need to enable and start our new custom service unit.

$ sudo systemctl enable docker-nginx.service
$ sudo systemctl start docker-nginx.service

Check the status of the service to confirm it is running as a service, and use docker to confirm the
details of the container.

$ systemctl status docker-nginx.service
$ docker ps

Restart to test out the configuration completely, making sure your container starts automatically after
a reboot. Your web browser should trust the web server’s certificate, or you missed something.

If you need to troubleshoot, remember your old friend netstat ... it should show that you have an
HTTPS service or a listener on port 443.

26

CS470Lab 4

The command docker inspect will require you to provide a container ID, but will give you extremely
rich information about how the container is configured.

The command docker exec -it <ID> bash will attempt to run a shell inside the container, and give
you interactive access to the inside of the container ... replace <1D> with the ID of your container.
Keep in mind, a container is intended to be light, so a lot of commands will be missing, but you might
be able to gain valuable insight as to what’s going on, or going wrong, inside your container.

part five: Vaultwarden, containerized with Docker, plus nginx reverse proxy setup

Now we’re going to set up an instance of Vaultwarden, an unofficial (but API-compatible) free and open-
source re-implementation of Bitwarden. Bitwarden is a popular password manager service, and along with
Vaultwarden, these are good choices for useful services to get running on your actual home network in your
free time.

In a prior iteration of this lab, | went through documenting the Bitwarden installation, only to find at the very
end that it doesn’t support the ARM architecture. Oddly enough, Bitwarden uses Microsoft SQL Server ... for
Linux. No matter how much time has passed, it’s still just really bizarre to see “Microsoft” next to “Linux,” let
alone in the name of a product, so I've left this here from my journey putting together these labs. This is from
/opt/bitwarden/logs/mssqgl/errorloq ...

2024-06-29 19:02:50.86 Server Microsoft SQL Server 2022 (RTM-CU12) (KB5033663) - 16.0.4115.5 (X64)
Mar 4 2024 08:56:10
Copyright (C) 2022 Microsoft Corporation
Express Edition (64-bit) on Linux (Ubuntu 22.04.4 LTS) <X64>

2024-06-29 19:02:50.87 Server UTC adjustment: 0:00

2024-06-29 19:02:50.88 Server (c) Microsoft Corporation.

2024-06-29 19:02:50.88 Server All rights reserved.

2024-06-29 19:02:50.88 Server Server process ID is 356.

... apparently, the reason Bitwarden won’t work on ARM is because of this dependency, and that Microsoft
SQL Server for Linux doesn’t yet support ARM. It’s for this reason that we moved to Vaultwarden.

Most of the directions here are taken directly from Vaultwarden’s wiki on their GitHub.

39. Create the directory where we’ll be storing Vaultwarden’s data.

$ sudo mkdir -m 750 /opt/vaultwarden

Vaultwarden graciously provides the template of a docker compose file with the bare minimum of
environment variables and configuration that Vaultwarden needs to run. Let’s save this to
/etc/docker/vaultwarden.yml like we did with nginx.

services:
vaultwarden:
image: vaultwarden/server:latest
container_name: vaultwarden
restart: always
networks:
- cs470

27

https://github.com/dani-garcia/vaultwarden

CS470Lab 4

40.

environment:

SIGNUPS_ALLOWED: “true”
volumes:

- /opt/vaultwarden:/data
ports:

- 12345:80

networks:
cs470:

Take note of the networks: lines telling this container to run on the c¢s470 container network — the
nginx.yml file we set up for the primary webserver on this system has the same setup. In a few steps,
we'll want nginx and vaultwarden containers to be able talk to each other. In general, to enable
inter-container network communication, either two containers must be sharing their hosts network
stack and communicating over that, or they must be part of the same "container network."

$ docker network 1s

NETWORK ID NAME DRIVER SCOPE
8b8fbab68e4d5b bridge bridge local
a30ef6948e8f docker_cs470 bridge local
eb6dfdcal3bb host host local
3a573£8d4c68 none null local

In the context of Docker, a bridge network on our Ubuntu VM is like the VM network on your host.
Containers are assigned IPs, and the host machine (here, our Ubuntu VM) acts as the network's
gateway. Something else that's neat about container networks is that containers can reference each
other on the network by their names. Here's a quick showcase of that with a busvbox container...

$ docker run --network=docker_cs470 -it busybox

ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
90: eth0@if91: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 gdisc noqueue
link/ether 02:42:ac:16:00:03 brd ff:ff:ff:ff:ff:£f
inet 172.22.0.4/16 brd 172.22.255.255 scope global ethO
valid_1ft forever preferred_lft forever

ping nginx

PING nginx (172.22.0.2): 56 data bytes

64 bytes from 172.22.0.2: seg=0 ttl=64 time=0.651 ms
e

AD

We’re able to bring up the container straight away.

$ docker compose -f /etc/docker/vaultwarden.yml up

I Starting Vaultwarden
| Version 1.33.2 |

This is an *unofficial* Bitwarden implementation, DO NOT use the

| |
| official channels to report bugs/features, regardless of client. I
| Send usage/configuration questions or feature requests to:

28

https://en.wikipedia.org/wiki/BusyBox

CS470Lab 4

41.

https://github.com/dani-garcia/vaultwarden/discussions or
https://vaultwarden.discourse.group/

Report suspected bugs/issues in the software itself at:
https://github.com/dani-garcia/vaultwarden/issues/new

[vaultwarden: :auth][INFO] Private key ’‘data/rsa_key.pem’ created correctly
[start][INFO] Rocket has launched from http://0.0.0.0:80

Vaultwarden automatically creates its own private RSA key for all the crypto operations it needs to
perform, before launching a Rocket web server listening on all interfaces on port 80. The wildcard
address and port number is only from the perspective of the container. Outside the container, the port
we want to use is 12345, because of the 12345:80 port mapping in vaultwarden.yml.

Navigate to http://ubuntu.cs470.internal:12345, et voila!

We’re nowhere near done, though. If you noticed “http” in that URL, the scary red lock icon in the URL
bar, or the lack of a multi-step certificate copying-and-signing routine, then you’d know you’re on a
totally unencrypted connection. In fact, if you try to use Vaultwarden in this unsecure (HTTP) context,
your web browser should straight-up block the use of JavaScript cryptography APIs, and rightfully so.

control-c out of the container in the terminal you started it in, if you haven’t already.

As you saw below its startup banner, Vaultwarden uses Rocket, a Rust web framework HTTP server.
We could generate a new cert for Vaultwarden to use, but since we already made a cert for this
hostname for nginx, let’s just reuse it and show off nginx's reverse proxy feature.

Fundamentally, forward and reverse proxies are just systems that sit between some network and the
wider Internet, handling the traffic in between.

Forward proxies forward traffic from a network to the outside Internet. You might be familiar with this
use case: if you wanted to connect to some system online but were concerned about them seeing who
you are, you could proxy your traffic through, well, a forward proxy, and they would see the proxy’s IP
instead of yours in their logs. If you want to examine all traffic heading outbound in order to contain
potential data leakages, a forward proxy is also a great way to handle that particular problem too.

A reverse proxy sits at the public-facing side of a network, relaying traffic from clients on the Internet
to the inside of the network. A business might have separate servers for HTTP, FTP, and email —a
reverse proxy would let clients access any of these on the same hostname, like someone at a front
desk giving directions to different places in a building. This is great for simplifying load balancing, as
well as handling transport-layer encryption (TLS/SSL) without needing to issue a new certificate for
each server.

Our goal state is simple: a public-facing nginx server configured to set up SSL connections and pass

requests for Vaultwarden, to Vaultwarden. We’d like nginx to keep serving our NFS share directory on
port 443, and listen on another port, say 8443, for Vaultwarden traffic.

29

http://ubuntu.cs470.internal:12345/

CS470Lab 4

42.

43.

Edit /etc/docker/nginx.yml and add another port mapping from 8443 on the VM to 8443 in the
container.

Because we’ll be using nginx to proxy connections to Vaultwarden, we don’t want any ports in our
Vaultwarden container to be exposed to our Ubuntu VM anymore. Go ahead and edit
/etc/docker/vaultwarden.yml and comment out or delete the port mapping list.

We're going to set up the reverse proxy behavior for nginx now, so open up /etc/nginx/sites-
enabled/default again.

For some communications, Vaultwarden uses WebSocket, a two-way protocol, which web clients can
switch to from HTTP with the Upgrade header. However, Upgrade and Connection HTTP headers are
"hop-by-hop," meaning they're passed to the proxy, but not the next hop, the Vaultwarden server. The
proxy needs to explicitly reconstruct those two headers as it passes the request along.

Add the following map block below the default server block.

map $http_upgrade $connection_upgrade {
default upgrade;

"o,
,

This defines a variable called connection_upgrade, based on the value of the client's http_upgrade
header. If the Upgrade header is empty, then we don't need to define a Connection header, but if
http_upgrade has any value, then connection_upgrade is set to "upgrade."

We don’t have the time, space, or drive to fully dissect HTTP here and now, so if you're curious about
what the heck that all means, here's some light reading.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://nginx.org/en/docs/http/websocket.html

Now we can define the proxy server by placing the following server block below the map block.

The request proxying lines look more complicated than they really are. When a client connects to port
8443 and hits /, nginx simply takes their request, sets up relevant HTTP headers, and passes it to our
Vaultwarden server's hostname and port. Since our nginx and vaultwarden containers are on the
same cs470 container network, they can resolve each other by name, as demonstrated a few steps
earlier.

server {
listen 8443 ssl;
server_name ubuntu.cs470.internal;
resolver 127.0.0.11;

ssl_protocols TLSv1.2;

ssl_certificate /etc/nginx/ssl/ubuntu.pem;
ssl_certificate_key /etc/nginx/ssl/ubuntu.key;

30

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://nginx.org/en/docs/http/websocket.html

CS470Lab 4

44.

45.

client_max_body_size 525M;

location / {
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade:;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

set $proxy_vaultwarden vaultwarden:80;
proxy_pass http://$proxy_vaultwarden;

Though each container’s /etc/resolv.conf file is already set to use the Docker daemon itself
(addressable on the loopback adapter at 127.0.0.11) for DNS, nginx is unable to do lookups on other
containers unless we explicitly specify a resolver for some reason.

Create a custom systemd service in /etc/systemd/system/docker-vaultwarden.service like you
did with nginx. Since they're so similar, let's just ...

$ sudo cp /etc/systemd/system/docker-nginx.service /etc/systemd/system/docker-
vaultwarden.service

... and use vi to replace any mention of nginx with vaultwarden.

Then, open /etc/systemd/system/docker-nginx.service in vi to change some systemd service
settings. Append docker-vaultwarden.service to the end of the after=Iline. Below the Requires=
line, add the following line to set a soft dependency on Vaultwarden. We don't want nginx to crash if
something's wrong with Vaultwarden.

Wants=docker-vaultwarden.service

Reload systemd, recreating the service dependency tree to lock in our changes to docker-
nginx.service, then enable the docker-vaultwarden service and restart everything.

sudo systemctl daemon-reload

sudo systemctl enable docker-vaultwarden
sudo systemctl restart docker-nginx

sudo systemctl restart docker-vaultwarden

O P B

You should now be able to pull up the Vaultwarden web interface at
https://ubuntu.cs470.internal:8443/. Make an account with your LDAP user's email address, and start
storing passwords!

Since we're all alone on our little network, after you make an account for yourself, edit
vaultwarden.yml again and set the environment variable SIGNUPS_ALLOWED to “false”

31

https://ubuntu.cs470.internal:8443/

CS470Lab 4

If you suspect an error with docker compose, you can see systemd service startup logs with:

$ journalctl -x -u <service>
If you get a “502 Bad Gateway” error in your browser, then something's preventing nginx from

proxying the request to Vaultwarden. Try the docker logs -fcommand, or getting a shell inside the
nginx Or vaultwarden containers.

part six: container management with Portainer

46. Wouldn't it be nice — the best and perhaps only happy song ever written about not getting what you
want — if there was a way to easily manage all the containers you install for docker? We're going to
install an open-source container manager called portainer that allows you to do just that.

First, let's create a volume for portainer to separately store persistent state data ...

$ docker volume create portainer_data

... and then tell docker to run portainer. What?! It's not been downloaded yet ...

$ docker run -d -p 8000:8000 -p 9000:9000 --name=portainer --restart=always -v
/var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data
portainer/portainer-ce

... and of course, docker has an answer for that. Realizing it doesn't have portainer, it just pulls it.
47. In a web browser on your host operating system, go to http://ubuntu.cs470.internal:9000/ and you

should be prompted to choose a username and password for the admin user. Note that we're using
port 9000 for this web service.

¥ New Portainer installation

> create the Initial administrator user
Username admin
Password

Confirm password X

X The password must be at least 8 characters long

48. Select to add an environment, then Docker as your container environment, and you should be able to
go to the local environment to see an interface that looks like this.

32

https://www.youtube.com/watch?v=h53Cnpb5hsM
http://ubuntu.cs470.internal:9000/

CS470Lab 4

49.

@porm?ner.io = Dashboard @ admin
endporn summary #myaccoun tioaous
Home

. @ Endpoint info
LoCAL

Dashboard Endpoint

App Templates URL

stacks F Tags

Networks

Volumes

o 4 % 0 healthy O 2 running
2 0 unhealthy ©1stopped
Stacks Containers
Events

) @ 3628MB8
Host m 2 1
Images Volume

Users
Endpoints

Registries

£ o < @

Settings

You can do a lot in this web Ul. You can add images, create new containers, stop or resume containers,
look at container logs, and much more. This can be pretty useful when you have a lot of containers
running.

Now, do the same with this container as with your nginx container, placing the YAML file in
/etc/docker/portainer.yml, and creating a custom systemd service in
/etc/systemd/system/docker-portainer.service ... for your portainer.yml file, you will need to
make some edits compared to last time, adding in a network and specifying your named volumes:

version: ‘3.1’
services:
portainer:

image: portainer/portainer-ce
container_ name: portainer
restart: always
networks:
- cs470
ports:
- 8000:8000
- 9000:9000
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- portainer_data:/data

networks:
cs470:

volumes:

portainer_data:
name: portainer_data

Create a systemd unit file for portainer as well, just like before with nginx, and test it and make sure
portainer starts up with your Ubuntu VM as well.

33

CS470Lab 4

You might need to delete an old image ... when trying to troubleshoot, remember to consult
systemctl and journalctl, or wherever else systemctl tells you to go. Also try manually starting
the container/service directly with docker on the command line (not docker compose) and see if you
get a more solid error message.

part seven: playing with GRUB for fun, profit, and single user mode

GRUB, the “grand unified boot loader,” is far and away the most common boot loader used in conjunction
with Linux. It supports other operating systems for dual-booting, allows for the reading of many kinds of
filesystems from an early-stage boot loader, and allows operation from a menu pre-populated with various
boot options or from a command line.

To reach the Linux boot loader menu, to boot into single user mode or boot with something besides the
defaults, you hold down the left shift key right after rebooting or powering on the machine, if booting with
“legacy” BIOS firmware, or the escape key if using UEFI.

Unfortunately, the escape key is also the key used to get into the UEFI boot firmware menus for VMware and
UTM. If you end up at the menu in the screenshot below, or one similar to it, just use the arrow keys and
enter to choose the hard disk boot option, and then get ready to lean on the escape key again right after that
to get into GRUB.

[B ubuntu.cs470.local

Boot Manager

ubuntu
EFI UMuare

T=Hove Highlight (Enter>=Select Entry

Also unfortunately, the escape key Is also used to break out of GRUB’s menu interface into a command line. If
this happens to you, just enter the command normal at a GRUB command line and you’ll be returned to the
menu. After doing this, you may want to hit escape one more time to kill GRUB’s auto-boot timer if one is
configured. You will not be returned to the command line interface a second time.

34

CS470Lab 4

o0 I B B ubuntu.cs470.local

GNU GRUB version 2.96

Instead, you should see something like the above menu. If you select “advanced options” you’ll end up at a
menu where you can choose between all the installed versions of the kernel, including the option to boot into
“recovery mode.” Recovery mode presents a menu with automation for various common maintenance tasks,
including freeing up disk space, cleaning broken packages, and updating the GRUB bootloader. The latter is
often very useful, as GRUB tends to use filesystem UUIDs to configure booting, and any number of things you
might need to do including replacing or upgrading a storage device, or restoring from a backup, might torpedo
your ability to cleanly boot up your system.

If the boot process continues and sprays text over your menu like in this screenshot ...

B ubuntu.cs470.local

Recovery Menu (filesystem state: read-only)
Finished Wait for Network to be Configured.
Try to make free space
Online. dpkg Repair broken packages
[OK S

in
Update grub bootloader

Enable ni

... remember that control- L will force most terminals including this console to re-draw the current contents.

35

CS470Lab 4

o0 I B ¢ O B ubuntu.cs470.local

Recovery Menu (filesustem state: read-only)

clean Try to make free space
dpke. Repair broken packages
Check all file systems
Update grub bootloader
Enable netuworking
Drop to root shell prompt
system-summary System summary

Selecting the “root” option at this menu brings you into single user mode for interactive maintenance, just like
we did in lab 1 with OpenBSD, only you won’t be surprised to find that single user mode in Ubuntu is far more
friendly ... the root filesystem is already mounted read/write if possible, and you don’t have to configure the
terminal.

Note that the above menu is specific to Ubuntu ... if you're trying to get into single user mode on another
Linux distribution (like Rocky), you will probably need to hit e to do a one-time (non-persistent) edit to one of
the existing menu options, and add single at the end of the line that starts with 1inux, to let the Linux kernel
know you’d like to boot into single-user mode. Then, hit control-x or F10 to boot into single user mode.

In my experience, trying to boot into single user mode often causes the kernel to hang in ARM VMs, especially
with Red Hat derivatives like Rocky Linux. You’re better off trying the rescue or recovery option.

[ubuntu.cs470.local

setparams 'Ubuntu, with Linux 5.15.0-76-generic’

36

CS470Lab 4

If your GRUB configuration is completely poked up, I've often done something like in this link ...

https://superuser.com/questions/1237684/how-to-boot-from-grub-shell

... to get my instance booted. Again, for those of you in UTM, using a serial console as your interface with your
VM instead of an emulated display may help out greatly here.

The GRUB menu can understand filesystems, to help you easily locate a kernel and an initrd (initial RAM
disk), as these are generally the only two things you need to boot a Linux-based operating system up.

part eight: Linux special virtual filesystems
This section is just expository; look at things ... there are no changes made in this section.

The /proc and /sys filesystems are virtual filesystems, used to expose process functionality (/proc) and
system hardware and kernel implementation details (/sys). There are a number of convenience features here
in both cases.

50. Along with union filesystems and various other innovations from Plan 9, the /proc file tree (also often
called procfs) was ported over to Linux to provide a way to abstract process functions, memory, and
metadata as a file tree, so that processes could be interacted with using file-based APIs.

The /proc file tree was initially intended to be only a clearinghouse for process information, but it
suffered from scope creep almost immediately, gaining information about system configuration, kernel
details, and devices ... none of which are processes. If you look at the root level of the /proc directory
on your Ubuntu VM, you can see how true this is. Information abounds about buses, and devices, and
power management, even the CPU itself ... all things which would make more sense under /sys.

$ more /proc/cpuinfo

If you pick a particular process, for instance the docker- compose process running our containerized
web server on this VM, you can explore various attributes of the process by probing the file tree under
its process ID number ...

$ ps auxww | grep docker-compose

root 2121 0.4 0.5 1725804 45312 ? Sl 01:33 0:00 /usr/libexec/docker/cli-
plugins/docker-compose compose -f /etc/docker/nginx.yml up

root 2122 0.3 0.5 1799792 45056 ? Sl 01:33 0:00 /usr/libexec/docker/cli-
plugins/docker-compose compose -f /etc/docker/portainer.yml up

root 2126 0.3 0.5 1799536 45568 ? Sl 01:33 0:00 /usr/libexec/docker/cli-

plugins/docker-compose compose -f /etc/docker/vaultwarden.yml up

... 50 for my docker- compose process for my nginx container, | wanted to look under /proc/2121 ...
use 1s now, substitute in your web server process’ ID number in this and the commands below, and
look at what you find in there.

37

https://superuser.com/questions/1237684/how-to-boot-from-grub-shell

CS470Lab 4

For instance, the cmdline “file” yields a bastardization of the command line options we supplied to
docker-compose in our systemd unit file.

$ more /proc/2121/cmdline
/usr/bin/python3/usr/bin/docker-compose-f/etc/docker/nginx.ymlup

Note that we don’t need sudo rights here, because this information is typically held to be public within
the system, and is also visible in the ps output above.

The environ “file” can be probed, if you own the process or leverage sudo rights, to display the full set
of environment variables being used by the process.

$ sudo cat /proc/2121/environ

LANG=en_US.UTF -
8PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/snap/binUSER=rootINVOCATIO
N_ID=defecb92bf1648b0a55dd8559e36bfeaJOURNAL_STREAM=8:19189SYSTEMD_EXEC_PID=2070MEM
ORY_PRESSURE_WATCH=/sys/fs/cgroup/system.slice/docker-
nginx.service/memory.pressureMEMORY_PRESSURE_WRITE=c29tZSAyMDAwMDAgMjAwWMDAWMAA=DOCK
ER_CLI_PLUGIN_ORIGINAL_CLI_COMMAND=/usr/bin/dockerOTEL_RESOURCE_ATTRIBUTES=docker.c
1i.cobra.command_path=docker%20composeDOCKER_CLI_PLUGIN_SOCKET=@docker_cli_16bddc55
44f3dd6ff53deb3£84b18ceb

The “file” mem ... this is a virtual file, as are all the rest, that can be used to probe the process’ virtual
memory space, and the file maps can be viewed to show the regions being used within that process’
virtual memory and their respective permissions.

$ sudo cat /proc/2121/maps

I’m not going to share the output here, because it’s long, but suffice it to say that you should see the
interpreter for docker- compose, the heap, the stack, variable areas, and virtual address space called
out for dynamically-linked libraries.

Using the information in both of these files, a script can be easily written to dump the contents of
memory from a particular process. Just like walking all of a web server’s pages and links, this activity is
often called “scraping.” I’'ve written such a script, and I’'m sharing it here with you so that you can take
a look at it and see what it does as an example of a short-yet-powerful shell script, and a good example
of the things that can be done with the file abstractions here in /proc.

$ wget https://slagheap.net/media/cs470/memscrape

You'll have to make it executable or an argument to bash to run it, and it will also require sudo rights.
Don’t have wget? You should know what to do by now.

51. The /sys filesystem has a noble design goal but isn’t quite so useful, in my humble opinion.

sysfs was developed to take the system-level information out of /proc and /proc/sys, though a
bunch of it still remains, as you saw in the last step. sysfs is the filesystem type for /sys. If you look
at the output of mount without any options on your Ubuntu VM, it’s very noisy. It’s even still if you

38

CS470Lab 4

filter it through grep sys, but this should stick out near the top of the output.

sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)

If you runman sysfs on Ubuntu, you’ll probably find — like | did — that there’s an API called sysfs
that’ll fetch information about a mounted filesystem.

$ man -k sysfs
sysfs (2) - get filesystem type information
sysfs (5) - a filesystem for exporting kernel objects

Soit'sman 5 sysfs that we're looking for here, but if you look at the man page, a lot is still “to be
documented,” and this is to be expected since sysfs is still very much in motion at taking over work
from procts.

sysfs —and the things intended to move into /sys from /proc/sys — behave in many ways like what
the BSD operating systems use sysct1 for: to expose kernel memory structures for the purpose of
allowing kernel-level system configuration information to be polled, tweaked, and tuned. Whereas
sysctl provides both an APl and a command line for changing values within a dot-notated hierarchical
namespace, sysfs changes the dots to slashes and makes a file namespace play out of it.

If you want to configure your Linux instance as a router or firewall, one of the first things you’d do
(again, don’t do this) would be to enable routing in your network stack. The old, BSD-ish way of doing
this would be ...

$ sudo sysctl -w net.ipv4.ip_forward=1
... now, you’d just change the contents of the file /proc/sys/net/ipv4/ip_forward from O to 1.

Yep, this is intended sysfs functionality, but it’s still under /proc. /proc/sys is considered part of
sysfs, and it is the stated intent of the kernel team to move /proc/sys out into /sys and to make
sysfs the official way to change kernel settings; the sysct1 API has been deprecated since version 5.5
of the Linux kernel, and the sysct1 command is just an interface on top of sysfs.

What can you do with /sys already? You can enumerate your network interfaces ...

$ 1s -1 /sys/class/net

.. or the enabled features and instances of various kinds of filesystems ...

$ 1s -1 /sys/fs/ext4

.. access firmware ...

$ 1s -1 /sys/firmware
.. or kernel modules, amongst many other things.

39

CS470Lab 4

$ 1s -1 /sys/modules

part nine: building a kernel

In many use cases, for instance “loT” devices and network gear, you’ll often have to build a custom version of
the Linux kernel. If you’re in a memory-strapped or low-powered device, you’ll want it to be as small as
possible for the sake of economy. As we discussed in lecture, the kernel is necessarily a part of every process’
virtual memory space and cannot be swapped out, so the less kernel there is, the more there is for every other
process on the system. If you're in a funny piece of hardware, you may have to build the kernel because your
hardware isn’t built-in.

We started this lab with 8 GB RAM because the Linux kernel will flatly fail to build with less than 4 GB and a
bunch of additional virtual memory space. Virtual memory is slower, though, and will wear out an SSD if

you’re using one, so let’s not. As usual, we’ll close this lab with tuning and will take most of that memory
back.

52. First, let’s install all the packages required for compiling a kernel ...

$ sudo apt install bc binutils bison dkms dwarves flex gawk gcc git gnupg2 gzip
libelf-dev libncurses-dev libssl-dev libudev-dev libpci-dev make openssl pahole
perl-base rsync tar xz-utils

... and support files for the current version of the Linux kernel that we’re been given by Ubuntu,
through the package manager. This may reply that it’s already installed; obviously not a big deal if it is.

$ sudo apt install linux-image-$(uname -r)

The use of the dollar sign and parenthesis above is logically equivalent to how we use backticks to
embed a nested command. It’s equivalent to this command.

$ sudo apt install linux-image- uname -r°

With uname -r above, we’re referencing the current release version of the kernel.

$ uname -r
6.8.0-55-generic

53. Head over to kernel.org and find the latest release. At the time this lab was written, kernel.org had a
big yellow button advertising the latest release version, 6.14. When you read this, it will almost
certainly be something different, but that’s okay ... just build the most recent. You’ll want to right-click
on that big bright yellow button, and select to copy the link to the clipboard.

In your Ubuntu VM, cd /srv/nfs and use wget again to download the kernel source tarball from the

link you just copied to the clipboard as an argument, just like when you grabbed memscrape from me
just a few steps ago.

40

CS470Lab 4

54.

As you’ll note, the download is a . tar.xz ... because it’s x-zipped, you’ll want to use the caps J switch
with tar to unpack it. This will take a while. The Linux kernel is big ... really big, and this is why they
chose x-zip ... it’s more computationally expensive, but it really saves space, as you can see.

$ du -sh ./linux*
1.7G ./linux-6.14
143M . /linux-6.14.tar.xz

Change directories into the Linux source tree you just extracted, and run make help. You'll see that
the kernel source tree supports multiple build targets, and has multiple “configuration targets” where
the source tree will help you build a configuration file for the Linux kernel.

Try make menuconfig ... you’ll see that it goes off, compiling a small-ish piece of software to help you
generate . config, the configuration file used when compiling the kernel. It then runs menuconfig,
which is somewhat reminiscent of text-based menus presented by FreeBSD’s installer and ports tree.

ttys005 — 386

ssh ubuntu — ttys005

Linux/x86 6.14.0 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus —----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [x] built-in
[1 excluded <M> module < > module capable

[x] 64-bit kernel
Processor type and features --->
[x] Mitigations for CPU vulnerabilities --->
Power management and ACPI options --->
Bus options (PCI etc.) --—>
Binary Emulations --->
Yirtualization --->
General architecture-dependent options --->
[%] Enable loadable module support --->
[%] Enable the block layer --->
Executable file formats --->
Memory Management options --->
Networking support --->
Device Drivers --->
File systems --->
Security options ---—>
vi+)

[

[x

< Exit > < Help> < Save > < Load >

Please feel free to explore and poke around in this menu interface. You won’t screw anything up,
because once you’re done, exit out, and to be safe, we’re going to recycle the configuration of our
running kernel, the one provided by Ubuntu ...

$ cp /boot/config- uname -r° .config

... and let’s update that configuration.

$ make olddefconfig

Warnings you receive here are probably okay. Errors are not. Near the end of the output, you should
see ...

configuration written to .config

41

CS470Lab 4

55.

56.

... and you’ll notice that the kernel’s build scripts backed up your old configuration to .config.old ...

$ 1s -1 .config*
-rw-r--r-- 1 peter peter 295777 Mar 25 22:00 .config
-rw-r--r-- 1 peter peter 287562 Mar 25 22:00 .config.old

The configuration file is pretty big as far as text files go, almost 300k, and if you page through it with
more, you'll see why ... it’s literally a dictionary of all macros used in the kernel source for various
options, all the possible options you could explore in make menuconfig. Yes, it's way more
configurable, but it still makes me miss the relative simplicity and elegance of BSD kernel configuration
files.

By default, Debian and its derivatives (of which Ubuntu is one) use a certificate to sign all kernel
modules, but we don’t have that certificate. For now, on this one little VM here with its custom kernel,
we don’t care enough to get it. Let’s disable this capability.

Use vi to edit . config, find the settings CONFIG_MODULE_SIG_KEY, CONFIG_SYSTEM_TRUSTED_KEYS,
and CONFIG_SYSTEM_REVOCATION_KEYS. Remove everything inside the quotes for each of these three
settings, leaving each as a null string.

Find the setting CONFIG_MODULE_SIG_ALL, and set it to n for “no.”

Also find the variable CONFIG_LOCALVERSION, and inside the quotes on that line, insert -cs470, our
class department and number with a dash before it to separate it from the rest of the version string.

With those changes done, save out .config.

At last, let’s fire up some compilers. This will go way faster if your Ubuntu VM has more cores. You
can find out how many logical cores you have by running the command nproc. | say “logical cores”
here, because on some architectures, this command may take hyper-threading features of the CPU
into account, and give you double the number of physical cores.

On my ARM Mac, nproc returned 2, on my Intel Mag, it also returned 2. If you’d like to shut down your
VM and give it more cores, these will just be more threads/processes on your host system, and | am
not going to grade you on the number of cores your VM uses. Keep in mind, however: more cores here
means more compilers running, which means more RAM being consumed, and when figuring out the
right mix, I've had OoM (out of memory) show up only on the console window and kill my compile job
mid-stream.

Once you’re done with that, if you did anything, invoke make with the -j switch to actually build the
kernel. If you’re thinking about doing this over an SSH session, this would be really good to do on the
VM'’s console or inside a screen instance like you were showed on demo day, to make sure a loss of
connectivity in between your host and Ubuntu VM didn’t kill your kernel build ...

42

CS470Lab 4

$ make -j ' nproc’ |& tee -a /srv/nfs/kernel.make.log

... or just run one compile task at a time to play it safe.

$ make 1& tee -a /srv/nfs/kernel.make.log

The -5 switch tells it to run as many parallel compile jobs as you have logical cores, and we’re
redirecting standard error (&) along with standard output in the pipe, and additionally directing them
both to a logfile for later perusal, if required. tee allows output to be sent both to the terminal and to
a file, so that you can watch the output without having to tail a file, and then break out of tail when
you think it’s done. You will get both a log trail of the compile job and a prompt when it is done or
stops for an error.

This will take a while; back on kernel version 6.5.5, it took a couple hours on my ARM Mac with four
cores, and almost four hours on my Intel Mac with two cores. | didn’t time it this time around.

If your kernel build ends in error like this (note ki11ed after the second line below, starting BTF) ...

LD .tmp_vmlinux.btf
BTF .btf.vmlinux.bin.o
Killed
LD .tmp_vmlinux.kallsyms1
NM .tmp_vmlinux.kallsyms1.syms
KSYMS .tmp_vmlinux.kallsyms1.S
AS .tmp_vmlinux.kallsyms1.S
LD .tmp_vmlinux.kallsyms?2
NM .tmp_vmlinux.kallsyms2.syms
KSYMS .tmp_vmlinux.kallsyms2.S
AS .tmp_vmlinux.kallsyms2.S
LD vmlinux

BTFIDS vmlinux
libbpf: failed to find ' .BTF’ ELF section in vmlinux
FAILED: load BTF from vmlinux: No data available

make[2]: *** [scripts/Makefile.vmlinux:37: vmlinux] Error 255
make[2]: *** Deleting file ‘vmlinux’

make[1]: *** [/srv/nfs/linux-6.14/Makefile:1159: vmlinux] Error 2
make: *** [Makefile:240: _ sub-make] Error 2

... then it’s a virtual lock that your kernel build is dying because your VM is out of memory, including
swap. Just as well ... it’s good that we get to use this as an excuse to show you how to add swap to a
Linux system if you need it.

First, create a file with appropriate permissions.

$ sudo install -o root -g root -m 0600 /dev/null /var/swap

Then make sure it’s the appropriate size, 4 GB.

$ sudo fallocate -1 4G /var/swap

Prepare it to be used for virtual memory.

43

CS470Lab 4

57.

$ sudo mkswap /var/swap

Finally, activate it as swap.

$ sudo swapon /var/swap

The command free -h should show that you have roughly 6 GB of swap now, and if you cat
/proc/swaps, you should see that most of it is free.

This swap file could be added to /etc/fstab if we wanted to keep it permanently ... but we don’t.
Once you get the kernel to finish building, you should be good to remove the additional temporary
swap space from virtual memory ...

$ sudo swapoff /var/swap

... and then from storage entirely.

$ sudo rm /var/swap

While you’re having fun not being able to use your computer for the time being, let’s preview the next
step with 1smod. 1smod just lists out all loaded kernel modules. The first column is the name of the
module, the second is the module’s size in bytes, the third column is how many instances of said
module are being used at that particular moment, and the last is a list of other kernel modules
dependent on it.

Open up another shell and use the 1smod command to see what Ubuntu has before we install this new
kernel. We're going to compare this output to what we get after we build and install.

$ lsmod | sort -o /srv/nfs/lsmod- uname -r°

Here begins the installation of the new kernel. First, we install kernel modules built along with the
kernel. If you messed up disabling module signatures, you’ll find out soon enough.

$ sudo make modules_install

I'IMPORTANT NOTE: Remember that root is mapped to nobody in an NFS share. If you get an error,
especially a clumsy one about spaces in the file path, check the permissions from the root of the
filesystem down into your kernel source tree.

If everything goes as planned, you'll see /1ib/modules/6.14-Cs470 get filled with . ko files (kernel
objects, or modules) followed by a bEPMOD (module dependency) scan.

Kernel modules, if you remember from lecture 6, are pieces of code you can dynamically load into the
kernel and unload from the kernel to provide support for different hardware, filesystems, networking
protocols, virtualization, and so on. If ever, in the real world, your wi-fi interface, Nvidia GPU, or laptop
trackpad randomly vanishes from your computer after a kernel update, you’re probably just missing
the kernel module(s) that provides support for it ... for your new kernel.

44

CS470Lab 4

The size of the installed modules, however, is preposterous by default. Here, you can see the module
directories supplied by Ubuntu on my Ubuntu VM compared with the one | just installed.

$ du -sh /lib/modules/*
7.6G /lib/modules/6.14.0-CS470
154M /lib/modules/6.8.0-55-generic

In kernel 6.11.3, in the last iteration of this lab, it was only 2.0 GB! In order to fix this ghastly
overconsumption of storage, we need to “strip” the modules. The utility strip is intended specifically
to save disk space like this, and modifies the existing binary, rather than making a modified copy of it.
We used to invoke strip ourselves with something like this ...

$ sudo find /lib/modules/6.14.0-CS470 -name “*.ko” -exec strip --strip-unneeded {} \;

... find is a really powerful utility ... we’ll explore it more in lab 5. In the command above, we’re
finding all files in our new kernel modules directory ending in . ko — the quotes prevent the shell from
trying to expand/glob the star —and running strip --strip-unneeded on all matching files.

Fortunately and unfortunately, starting recently in Ubuntu 23.10 and also to save disk space, kernel
modules are compressed by default, using Zstandard (also called “Zstd”) compression. You should
have noticed zsTD scrolling by as it was invoked while installing the modules ... you’ll definitely notice it
happening now. The modules being compressed, however, means we can’t strip them directly ... but
there is a switch we can provide the kernel Makefile to getit to strip them before compression.

Remove the modules you installed ...
$ sudo rm -rf /lib/modules/6.14.0-CS470
... then re-install the stripped versions of them.

$ sudo make modules_install INSTALL_MOD_STRIP=1

After running the above, the new module directory uses way less space ... about 7 GB less. Much
better.

$ du -sh /lib/modules/6.14.0-CS470
588M /lib/modules/6.14.0-CS470

| recommend you look at the man pages for both strip and find.

58. This step only needs to be done on ARM Macs / ARM VMs and other architectures, not on Intel/AMD
CPUs.

If you’re running on a host with an Intel or AMD CPU, you can skip this step.

$ sudo make dtbs_install

45

https://en.wikipedia.org/wiki/Zstd

CS470Lab 4

59.

60.

Now, install the kernel.

$ sudo make install

You should see a few things happen; the kernel makes a new initramfs (initial RAM filesystem), then
installs that and the new kernel (vmlinuz-*)to /boot. Finally, it tells GRUB to sense all the kernels
under /boot and rebuild its configuration file. If you ever have to do this manually, the command you
want to run is right here.

$ sudo grub-mkconfig -o /boot/grub/grub.cfg

You could also run update - grub, a tiny script that just runs the above command for you.

$ more “which update-grub’

#!/bin/sh

set -e

exec grub-mkconfig -o /boot/grub/grub.cfg ”$@”

Let’s take a minute here to review the Linux boot process.

Whether you’re working with a real or virtual machine, after you press the power button, the BIOS
(UEFI) picks a boot entry saved in the EFI variables stored in UEFI, a chip on your motherboard if it’s a
physical computer. EFl variables can be set from the UEFI menu, or from the OS with the efibootmgr
command. The chosen boot entry stores where the bootloader, in this case GRUB, can be found within
the disk’s EFI system partition (what we mount at /boot/efi) and runs it. If you had multiple
operating systems installed on your computer’s storage device(s), you would typically have a boot
entry for each OS.

After GRUB has been executed, we get to choose to boot from a handful of GRUB menu entries, as
defined in /boot/grub/grub.cfg. Even though the root filesystem is nowhere close to being
mounted yet, GRUB comes statically linked with a handful of filesystem drivers, allowing it to find
where /boot/grub/grub.cfg resides on our disk, even if that disk is actually an LVM volume, a RAID
array, heavily compressed or heavily encrypted ... GRUB even comes with a network stack to be able to
search for its config file on an NFS share.

On your Ubuntu VM, look at /boot/grub/grub.cfg, and look for configuration stanzas starting with
menuentry. You should see two menu entries, one each for our new and old kernels, as well as sub-
entries for booting into recovery mode. Pay attention to the following lines, which define where the
Linux kernel image and initramfs — called initrd (initial RAM disk) for historical reasons — exist for
that particular menu entry.

echo "Loading Linux 6.14.0-CS470 ...~
linux /boot/vmlinuz-6.14.0-CS470 root=UUID=1db32191-380e-4445-9ec5a-2e548c454c91 ro
echo "Loading initial ramdisk ...’

initrd /boot/initrd.img-6.14.0-CS470

Notice how the UUID of the root filesystem partition is passed as a parameter to the kernel image. You
could also use device notation here, like root=/dev/sda2, but using UUIDs is preferred so that we

46

CS470Lab 4

61.

always choose the right partition, even in increasingly common cases of /dev/sda becoming /dev/sdb
when a another storage device is added to the system. This also makes name mismatches or collisions
between our partitions are astronomically unlikely.

Isn’t it awesome to once again behold the “everything is a file” doctrine of the Unix philosophy? Try
running file on the kernel image and initramfs. You can straight-up trash your kernel just like any
other file, and could probably swap in a friend’s kernel image (along with his kernel modules, GRUB
configuration lines, etc.), to replace it for the next time you boot. Good luck trying anything remotely
similar to that on Windows.

Anyways, when you hit the “enter” key to pick a GRUB menu entry, GRUB first loads that entry’s
respective kernel image, located at /boot/vmlinuz-*. The kernel on old Unix systems was
traditionally stored at /unix. With the advent of virtual memory, the kernel would be called vmunix,
with the advent of Linux, vmlinux, and when we started compressing our kernel images to save disk
space and get past size restrictions of some architectures, vml1inuz. From our kernel config, we can
see that Zstd compression was enabled by default on our kernel image, not any of the other standard
compression algorithms.

grep CONFIG_KERNEL_ /srv/nfs/linux-6.14/.config
CONFIG_KERNEL_GZIP is not set
CONFIG_KERNEL_LZMA is not set

CONFIG_KERNEL_XZ is not set

CONFIG_KERNEL_LZO is not set

CONFIG_KERNEL_LZ4 is not set
CONFIG_KERNEL_ZSTD=y

CONFIG_KERNEL_MODE_NEON=y

HHHHH

After loading the kernel image, the root filesystem isn’t immediately mounted. The kernel first mounts
the initramfs, which holds filesystem drivers and other utilities required to mount the real root
filesystem. We also typically want to run tools like fsck on our root filesystem before mounting it—
the initramfs stage of booting is a perfect time for this.

Finally, the root filesystem is mounted, init is run, our systemd services start (or our rc scripts if we
were on a BSD), and we get a login prompt.

Hopefully the Linux boot process and its modularity makes more sense to you now.

Your new kernel should be the new default; reboot your Ubuntu VM, go into the “advanced options”
menu, and confirm this. Reboot Ubuntu with your new kernel, check out the GRUB menu on the way
back in because you’ll likely have to manually pick your kernel, and check out your new kernel with
uname. You should see something similar to the below.

$ uname -a
Linux ubuntu 6.14.0-CS470 #1 SMP PREEMPT_DYNAMIC Wed Mar 26 21:08:15 UTC 2025
x86_64 x86_64 x86_64 GNU/Linux

$ uname -r
6.14.0-CsS470

Once you're fairly sure your new kernel is installed correctly and working acceptably, clean up your
47

CS470Lab 4

62.

kernel source tree but don’t remove it entirely ... we’ll use parts of it later for grading, but it takes up a
pretty crazy amount of space and we’ll need that storage space later on, in lab 6.

$ du -sh /srv/nfs/linux-6.14
28G /srv/nfs/linux-6.14

Now you know why | asked for this additional space back inlab 3 ... make clean is exactly what the
doctor ordered here.

$ cd /srv/nfs/linux-6.14 && make clean && du -sh /srv/nfs/linux-6.14

CLEAN security/apparmor

CLEAN security/selinux

CLEAN security/tomoyo

CLEAN usr

CLEAN .

CLEAN modules.builtin modules.builtin.modinfo .vmlinux.objs .vmlinux.export.c
1.7G /srv/nfs/linux-6.14

Much better again, to the tune of over 26 gigabytes of space savings.
Remember that file we made a few steps ago to demonstrate what 1smod does? Let’s use that

command again to dump out all the modules in this new kernel. Now diff the two files to find the
differences between those two files and pipe that into more to get nice looking output like this ...

48

CS470Lab 4

2c2
< aesni_intel 356352

> aesni_intel 122880
9c9
< auth_rpcgss 184320 rpcsec_gss_krb5

> auth_rpcgss 180224 rpcsec_gss_krb5

12,14c12,14

< blake2b_generic 24576

< bluetooth 1028096 btrtl, btmtk, btintel, btbcm, btusb
< bridge 421888 br_netfilter

> blake2b_generic 26480

> bluetooth 9830u0 btrtl, btmtk, btintel, btbcm, btusb
> bridge 4es5e4 br_netfilter
17,19¢17,19

< btintel 57344 btusb

< btmtk 12288 btusb

< btrfs 2015232

> btintel 65536 btusb

> btmtk 36864)

> btrfs 2019328

21,22¢21,22

< btusb 77824

< cfg8e211 1323008

> btusb 69632

> cfg80211 1335296

29,32¢29,30

< drm_ttm_helper 12288 vmwg fx

< el0ee 180224

< ecc 45056 ecdh_generic
< ecdh_generic 16384 bluetooth

> drm_ttm_helper 16384 vmwgx
> el000 172032 ©

37c35

< hid 180224 usbhid, hid_generic

> hid 262144 usbhid, hid_generic
39a38

> i2c_smbus 16384 i2c_piixy

4lcue

< intel_rapl_common 40960 intel_rapl_msr

> intel_rapl_common 49152 intel_rapl_msr
53c52

< mEtsEi 24576

Notice any interesting differences? The bluetooth module stood out to me. It got smaller in the new
kernel.

63. Another handy utility is modprobe; it loads and removes kernel modules. Based on what you know
about the information 1smod gives you, you could try to remove the modules that are not needed. To

confirm you actually got rid of the kernel modules, you can use a combination of 1smod and grep.

Congratulations; you’ve just built, installed, and explored a fresh Linux kernel from source.

part ten: patching and tuning

64. Let’s patch our systems. We’ve been using apt repeatedly to fetch packages, and just like with Rocky
Linux and other Red Hat derivatives, the package manager is also used to patch and upgrade the whole
operating system.

The apt package manager’s “update” verb tells it to synchronize its caches against lists of currently-
49

CS470Lab 4

65.

66.

available packages in its configured repositories.

$ sudo apt update

The command should show passing through each of its configured repositories and sub-repositories,
and then produce output similar to the following ...

41 packages can be upgraded. Run ‘apt list --upgradable’ to see them.

... you should also start seeing similar output in e-mails from the crontab entry we set up earlier in this
lab, to let you know when you have things to patch. When you do, the “upgrade” verb is the droid
you’re looking for.

$ sudo apt upgrade

You might see apt tell you that several packages are no longer needed; you’ll also find that this is a
common occurrence. Packages are often built by default in different ways with different
dependencies, and if an installed package is a dependency, not one that administrator(s) specifically
requested by name, then apt will do you the service of telling you its services are no longer required.

If you see any such packages that are no longer needed, and you want to reclaim the disk space, do
this, as apt recommends ...

$ sudo apt autoremove

To remove packages, it’s as simple as ...

$ sudo apt remove <package>

To remove packages as well as their configuration files with extreme prejudice ...
$ sudo apt purge <package>

My ARM64 Ubuntu VM had been springing this on me the whole time, since the first reboot:

1 device has a firmware upgrade available.
Run " fwupdmgr get-upgrades for more information.

Running fwupdmgr get-upgrades produced several advisories for problems with secure boot and the
associated firmware patches. Since this is a VM, there are no chips to flash to update the firmware of
the compute instance. The firmware are files provided by UTM, and the update will be properly done
in an update to UTM.

Take no action here; this was just for everybody to read and us to not ignore that heads up from
Ubuntu’s default login scripts.

Using the top command, | found my Ubuntu instance in VMware was using way less than 8 GB RAM.

50

CS470Lab 4

Power it off. Remove some RAM, then power it back on. Experiment with how little RAM you can get
away with, while your Ubuntu VM operates normally with all its containers.

When you’re done with that, you are also done with lab 4.

</lab4>

51

