

 1

CS 470: Unix/Linux Sysadmin
Spring 2025 Lab 2
FreeBSD and e-mail with sendmail and dovecot

Things from prior labs that are required to begin this lab:

• lab 1b: working certificate authority and LDAP server
Things in this lab that are on the critical path for upcoming labs:

• getting FreeBSD up and online
• getting your mail server accepting mail and delivering it to your inbox
• doing the errata for this lab

This lab gets our hands dirty with the far-and-away most prominent free-and-open-source BSD-derived
operating system, FreeBSD. Whereas OpenBSD has always focused on being the most secure operating
system (see http://www.openbsd.org/goals.html), FreeBSD has always been focused, in their own words, “to
provide a stable and fast general purpose operating system that may be used for any purpose without strings
attached.” The language I quoted used to be found on this page, and has been removed since I first reference
it in this lab years ago, but references to it and its general intent remain.

OpenBSD has always quite unabashedly only catered to power users and hackers, and famously expects it
users to know what to do with it … which means the operating systems mostly get easier from here. Pat
yourself on the back, you're over the proverbial hump.

To further its design goals, FreeBSD’s codebase is much larger than that of OpenBSD, and the amount of
supported hardware and third-party software is much greater. There are also a lot more creature comforts all
around. FreeBSD makes less design assumptions about a user’s level of skill or threshold for pain, and has a
much larger community of developers and users – notably, FreeBSD code has been extensively used in the
development of macOS, the Sony PlayStation line of gaming consoles, under the sinister hood of Google’s
search surveillance engine, and inside Juniper routers, and NetApp network storage devices ... the latter two
obviously because of FreeBSD well-established reputation for having the fastest TCP/IP stack, of any operating
system. For many years, the fastest and highest-traffic internet sites ran FreeBSD, until the time came where
producing statistics was no longer feasible.

Once upon a time, another surveillance and mind control company had a program to bring the Linux kernel's
famously bad IP stack up to parity with FreeBSD's.

https://www.theregister.com/2014/08/07/facebook_wants_linux_networking_as_good_as_freebsd/

That says it; for over thirty years now, if you want to push traffic as fast as you can, or you want to take a
derivative source base private, you use Berkeley Unix (BSD), and that’s that.

Back to the greater scheme of things. We have plumbed IP and name service for our little private network in
lab 1, and provided encryption and shared authentication infrastructure in lab 1b. Now we’ll set up e-mail
services, to see what setting up the first killer application of the internet looks like, and to provide centralized
collection of periodic diagnostic jobs as we delve further into system internals. FreeBSD is going to be our mail
server, to help us aggregate all this data.

http://www.openbsd.org/goals.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/introduction.html#idp44542712
https://www.theregister.com/2014/08/07/facebook_wants_linux_networking_as_good_as_freebsd/

 CS 470 Lab 2

 2

‼ IMPORTANT NOTE: after setting up this lab, you will want to start leaving your VMs on overnight, at least
some of the time. A lot of cron jobs run during the late hours, by design, and we want you to see their
output! If you’d rather not leave your computer on overnight, some students in the past have made nighty
cron jobs run by day when they knew they’d be up and with their computers on. By all means read man cron
and tinker, but you’re on your own here if you do this … just make sure cron jobs produce output via e-mail.

FreeBSD 14.2 is now available (https://www.freebsd.org/releases/14.2R/announce/), and as much as it hurts
me sometimes, we don’t have the same inhibition for using new major releases in this class that we often do
in enterprise environments. In business IT, you often want to wait for the first minor version update, let
others be early adopters, and sit on the sidelines while they find problems with new releases first.

part zero: get it

Grab the latest FreeBSD 14.2 installation “disc1” ISO from the following URL.

https://download.freebsd.org/ftp/releases/ISO-IMAGES/14.2/

Intel users want the amd64 disc1 ISO, just over a gigabyte in size. ARM Mac users want the arm64 disc1 ISO,
just under a gigabyte. Also note, there’s an x-zipped version (ending in .xz) that’ll save you some time
downloading, but xz is the most successful at shrinking files in part because it’s the most CPU-intensive
algorithm. Just know that you pay in wait time after you download, if you go this route. I recommend you
don’t. You will want to keep this ISO after you’re done with lab 2 … you’ll use it again in lab 6.

Look around FreeBSD’s website at www.FreeBSD.org … in particular, I’d like you to notice …

… the release notes for version 14.2 (https://www.freebsd.org/releases/14.2R/relnotes/), and within that, the
“availability” section explains what the various downloads contain, and in some cases, how to use them.
“Release notes” are typical for all software releases … OpenBSD has a very similar document. I just didn’t ask
you to look in lab 1 … but I suggest you do now.

… the security advisories page (https://www.freebsd.org/security/advisories.html) … click on one of the links.
Note how affected versions of each advisory are listed, along with descriptions of the problem, security
ramifications, installation directions, and links to signed source code diffs. As we discussed in lab 1, until just
recently, all base operating system patching in BSD-land was historically always done manually, with source,
by re-compiling affected pieces of the operating system. We’ll revert to full binary patching here in lab 2, but
still wanted to point this out.

part one: install it

Create a new, custom virtual machine in your hypervisor, whichever it is. ARM Mac users, we’re using an ARM
installation ISO, so choose to virtualize rather than emulate this time. On this system, let’s use the following
specifications:

https://www.freebsd.org/releases/14.2R/announce/
https://download.freebsd.org/ftp/releases/ISO-IMAGES/14.2/
http://www.freebsd.org/
https://www.freebsd.org/releases/14.2R/relnotes/
https://www.freebsd.org/security/advisories.html

 CS 470 Lab 2

 3

• guest OS:

o Intel/VMware: FreeBSD 14 64-bit
(if FreeBSD 14 isn’t listed in VMware, use version 13 or 12 for now and update VMware)

o ARM/UTM: virtualize, other
• CPU: two virtual cores/processors
• boot firmware: UEFI

(this is the default on ARM/UTM)
• RAM: 1024 MB
• hard disk: 16 GB

ARM Mac people, in UTM: change the display card to a “virtio-ramfb” if it’s not set to that already, so that you
can pause the VM.

Even though FreeBSD is under the “other” menu in VMware products, it has enough market share to get its
own entry. Keep in mind, though, as stated on demo day, this selection is just to help VMware choose guest
drivers and the best guest hardware, and the "guest OS" configuration option for a slightly older version of
FreeBSD should be just fine.

1. Boot the VM, and we can already see from the boot loader menu that we’re in for at least a slightly
different experience than with OpenBSD … but if we wanted a command line, we could get it here,
with option #3. That said, we just want to choose the “boot installer” here.

Those of you on Intel are going to see a much snazzier version of the boot loader menu than the older

 CS 470 Lab 2

 4

one on Intel, or those on ARM Macs will.

FreeBSD’s mascot is a daemon … not a demon, but a daemon. While Beastie (yes, that’s his name)
looks slightly devilish, he takes his name from BSD itself and from service daemons, and is Unix through
and through. His trident is a reference to fork(), and he has been visually tweaked over time as the
software he represents has evolved. When BSD got the “fast” file system (AKA “FFS” or ffs) we
discussed in lab 1, Beastie got sneakers in a lot of the BSD merchandising and art, which he’s continued
to wear to the current day.

The most popular version of Beastie was drawn by none other than John Lasseter, long before John
was the creative leader at Pixar, or the head of Disney Animation.

2. Once you’re done with the march of text of the FreeBSD kernel enumerating various devices and which

drivers to use with them you are presented with this menu.

 CS 470 Lab 2

 5

In FreeBSD’s text-based installer, the tab key changes sub-sections or areas within the FreeBSD
installer … generally the arrow keys can be used to move around within areas of an installer “window.”

‼ IMPORTANT REMINDER: if you ever get diagnostic messages printed over the installation interface,
like in the screenshot below, control-L is often honored by many terminals and terminal emulators as
a request to re-draw the terminal window. This is an older screenshot from an installation using legacy
BIOS I’ve kept around to show what this looks like, just in case it should also happen to you.

 CS 470 Lab 2

 6

3. You’ll see a lot of the options line up similar decisions to those we had to make during the OpenBSD
installation process, for instance choosing a keyboard layout (“map”). The default here should be fine.
If you mess anything up along the way, you probably won’t need to start over; FreeBSD will ask you at
the end if you’d like to change anything before rebooting into your freshly-installed VM.

When asked to set a hostname, use freebsd all in lower case.

On the distribution selection page, deselect kernel-dbg and lib32 if they’re presented as options,
and select src … use the space bar here to toggle selections, and in screens like this. Note the ports
tree here, but don’t install it. Just like with OpenBSD and ports-current there, we’re going to install a
rolling, updated version of the FreeBSD ports tree later.

At the partitioning dialog, select “Auto (UFS)” and then “entire disk,” and GPT as the partitioning
scheme. I was pleasantly surprised to find that the automatic configuration in FreeBSD now makes use
of a single partition for the file namespace. It should look like the screenshot below, with the bulk of
the disk in a single root filesystem. FreeBSD used to use roughly two times the RAM in the VM as a
dedicated swap space … now for some reason, it’s suggesting about 800 MB of disk. I’m not sure why,
but modify your layout to use 14 GB of root filesystem and the remainer (about 1.7 GB) for swap.

Once upon a time we used to use partitions as the rule rather than the exception; exponentially
cheaper disk space is a huge driver for not partitioning.

If your disk device is ada0, this is not a problem ... it just means VMware put a virtual ATA or SATA
device in your VM (driver name ada, the first instance of which is zero, of course). da is the device
driver name for disks attached to SCSI buses. Inside UTM, FreeBSD uses a vtbd (VirtIO) disk device.

 CS 470 Lab 2

 7

All BSD-derived OSs historically used letters a through h for their partitions. AT&T-derived OSs use the
numbers 0 through 7, as we will see later on in the labs and the lectures. However, unlike OpenBSD
with legacy BIOS and MBR, FreeBSD with a GPT partition table no longer uses partition letters.
FreeBSD with an MBR partition table still does use partition letters, likely because it has to sub-
partition an MBR partition table like we saw OpenBSD do, to support more than four partitions.

After you’re done here, select “finish” and the installer will, as all do, ask you to confirm you’re really
ready to wipe out the prior contents of the drive. You’ll then see the “archive extraction” screen …
… the src tree will take a little while; it is full of lots of small files.

You’ll then be asked for a root password. Choose a good one!

4. Network configuration … you should only have one NIC in your VM. It’s been an le0 device in the past,
but the last few times it’s been an em0. People in UTM will probably have a VirtIO network adapter
(vtnet0). It doesn't matter which one you have, so long as the installer detects a network interface.
FreeBSD, VMware, and UTM all support several kinds of emulated NICs, and just like with the disk
devices in the prior step, each set of letters denotes a different driver, in turn for a different set of
devices. em is an Intel gigabit NIC; le is a "Lance" ethernet chip, now put out by AMD.

We want to configure IPv4 for this interface, but not IPv6. We do NOT want to use DHCP.

!! IMPORTANT NOTE: if your OpenBSD VM isn’t turned up right now, make sure it is, because we’re
about to be using it as the name server. As a general rule, you will always want ALL your VMs up and

 CS 470 Lab 2

 8

running together during labs. If your laptop starts bogging down, turn down other VMs first, but leave
the two BSD-based VMs up! After lab three, the lab three VM will be required as well.

You will want to substitute in the first three octets of your private IP network for what you see in the
next screenshot, but everybody’s FreeBSD VM should be .72. Of course, use the same router as in lab
1 (on some setups it’s .2, on the others it’s .1). The default gateway does not change in between
computers on a subnet; it is a fixed value for the whole network.

VMware may ask you to provide your password for your “host” (non-virtual) operating system to allow
the guest permission to set up the network properly. If it asks, please provide it.

We do not want to set up IPv6; again, neither VMware nor UTM support it well, and we’ll be using it in
none of the labs.

Finally, you’ll be asked to provide the resolver configuration for DNS. Your search path should be
cs470.internal (the DNS namespace we set up in lab 1), and your only name server should be the IP
address of your OpenBSD VM.

5. You’ll be asked to set the time zone, then to set the date and time.

In the next screen after that (“system configuration”), you’ll be asked to choose services you want to
be started at boot. sshd and dumpdev should be pre-selected, and we want them running. Add
ntpd_sync_on_start to set the clock at boot time, ntpd to keep track of the time as the VM runs, and
powerd, to save you some electrons.

 CS 470 Lab 2

 9

The “system hardening” screen is next. You may leave all these boxes unchecked.

6. You’ll then be asked if you want to add users to the installed system … take this opportunity, and do so.
We’re setting up the failsafe user locally, just for use in setting up LDAP and in case it breaks, just as
in lab 1. Use user ID number 1000 for failsafe, same as the OpenBSD installer used for you. You’ll
see why we do this later.

The default login group option (a group of your own) is fine.

Add your failsafe user to the wheel and operator groups in the next question, separated by a space,
so we can become root with this user (wheel), and shutdown the system and perform backups without
becoming root or using sudo.

bash doesn’t come installed by default with FreeBSD; for the closest thing to it until we get it installed,
pick tcsh for your shell.

It should be obvious, but don’t lock out the account after creation.

 CS 470 Lab 2

 10

After your user is created, don’t create another.

You’ll make it to the “final configuration” menu, where you’ll have the choice of revisiting a lot of the
prior options, if you want to change anything you selected. If you do, great, go! Experiment! If not, or
when done, select “exit.” Then tell it you don’t want a shell, and that you want it to reboot. Your
FreeBSD installation is complete, and your system will reboot into multi-user mode.

Make sure you remove the ISO file from the virtual optical drive while it reboots.

7. Log into the console of your FreeBSD system, and make a .ssh directory inside failsafe’s home
folder.

$ mkdir -m 700 ~/.ssh

Now, copy your SSH public key over into the authorized_keys file, as usual, so you can use your key
and agent to log into your FreeBSD VM. Test it. Now initial setup is truly complete, and you can use
SSH from here on out.

8. Now let’s check out where the FreeBSD put most of the options we chose during installation.

$ more /etc/rc.conf

My output looked like this; of course yours will look slightly different, depending on the first three
octets of your VM network and what kind of NIC your VM is using.

 CS 470 Lab 2

 11

hostname="freebsd"
ifconfig_em0="inet 10.42.77.72 netmask 255.255.255.0"
defaultrouter="10.42.77.2"
sshd_enable="YES"
ntpd_enable="YES"
ntpd_sync_on_start="YES"
powerd_enable="YES"
moused_nondefault_enable="NO"
Set dumpdev to "AUTO" to enable crash dumps, "NO" to disable
dumpdev="AUTO"

Note that the network configuration here in rc.conf is mixed with service configurations. Also note,
the file is relatively short for a full system configuration. This is because FreeBSD has a set of “default”
configuration files under /etc/defaults that it reads before local configuration does the rest. Take a
second to look briefly through all the settings and on/off switches for built-in services.

$ more /etc/defaults/rc.conf

This file, by comparison, is much larger … with the goal of giving you a smaller rc.conf to look at,
where you made only the changes to set or override whatever boot variables you want. On OpenBSD,
/etc/rc.conf.local (with the changes) is parsed after the defaults in /etc/rc.conf.

As we saw in lab 1, OpenBSD stores its network interface configuration(s) in /etc/hostname.* files,
named by interface driver and number, and its default gateway in /etc/mygate. FreeBSD stores its
default gateway in a statically-named shell variable (defaultrouter), and stores its network interface
configuration(s) in shell variables, named by device name and number.

9. Remember the login banner? Fear not if you don’t … since the dawn of time it's been in /etc/motd
like OpenBSD, and will be found in the same place on virtually every OS we play with. FreeBSD’s motd
is now dynamically generated, a change that seems to have been driven by jealousy of the dashboard-
like information presented during a login into Ubuntu, which we'll see soon, in lab 4. Presumably, we’ll
be able to add more that isn't there quite yet ... the template and the target seem static, and quite
identical.

$ more /etc/motd.template

Welcome to FreeBSD!

Release Notes, Errata: https://www.FreeBSD.org/releases/
Security Advisories: https://www.FreeBSD.org/security/
FreeBSD Handbook: https://www.FreeBSD.org/handbook/
FreeBSD FAQ: https://www.FreeBSD.org/faq/
Questions List: https://lists.FreeBSD.org/mailman/listinfo/freebsd-questions/
FreeBSD Forums: https://forums.FreeBSD.org/

Documents installed with the system are in the /usr/local/share/doc/freebsd/
directory, or can be installed later with: pkg install en-freebsd-doc
For other languages, replace "en" with a language code like de or fr.

Show the version of FreeBSD installed: freebsd-version ; uname -a
Please include that output and any error messages when posting questions.
Introduction to manual pages: man man

 CS 470 Lab 2

 12

FreeBSD directory layout: man hier

To change this login announcement, see motd(5).

The FreeBSD Handbook is a far more comprehensive walkthrough-style documentation for a near-
complete set of features of FreeBSD. We’ll be talking shortly about how various operating system file
hierarchies are laid out, but I wanted to make a point of showing this off … most other operating
systems don’t have a neat man page with a guided tour through their file tree.

$ man hier

Again, use return to scroll through line-by-line, space to load another page.

If you need to shut down your FreeBSD VM, FreeBSD supports the same syntax for shutdown as OpenBSD
does. FreeBSD also implements poweroff, which OpenBSD doesn’t have. This tool came from AT&T Unix, and
has been included with most Linux distributions for some time. It comes to BSD-land last, of course, finally
having won acceptance after a long time in the limbo of Linux-land. poweroff is effectively an alias for
shutdown -p now.

part two: installing third-party software, both from source and package

Now let’s install some software on your FreeBSD VM. Since we used the ports tree to build from source in
OpenBSD and lab 1, and since I initially faced some issues with the ports tree on my ARM Mac, we’ll be
exploring the binary package manager (pkg) in this section of the lab.

The package manager helps manage things installed via the ports tree as well, because in both OpenBSD and
FreeBSD, when you build a port, you build the package, and then install the software from that package. In
fact, the ports tree is how the operating system team automates building the third-party software binaries it
distributes via the package manager. As such, the software installed by both methods are effectively
interchangeable, and you can manage/upgrade/uninstall software installed both ways by using pkg on both
operating systems.

For many years, FreeBSD had a utility called portsnap for managing the ports tree and keeping it up to date
with differential updates, in order to minimize the traffic required to host the ports tree. During the lifecycle
of FreeBSD 13, the development team completed a transition to using git for source code control for the
entire operating system. git comes from the Linux kernel project, we’ll play with it in lab 7, and it is what
most source code repositories are going to for version control. In FreeBSD 14, portsnap has been removed,
and we use git to download the ports tree … so there’s no way around using pkg briefly, at least to bootstrap
the ports tree if we want to track a current copy of it, with security fixes and updates.

10. Let’s install and initialize FreeBSD’s pre-compiled binary package manager … pkg moves so quickly that
it used to be shipped as a part of FreeBSD but updated after virtually every installation. Now they’ve
given up on shipping pkg at all.

Note that you find a tool called pkg in /usr/sbin …

 CS 470 Lab 2

 13

$ which pkg
/usr/sbin/pkg

… but this just exists to tell you that pkg really isn’t there yet, and has to be installed, as you’ll see. Use
su to become root (note the pound sign prompt below) and run the following command.

pkg update

… key in a y at the right time to override the default answer and install pkg.

The package management tool is not yet installed on your system.
Do you want to fetch and install it now? [y/N]: y
Bootstrapping pkg from pkg+https://pkg.FreeBSD.org/FreeBSD:14:amd64/quarterly,
please wait...
Verifying signature with trusted certificate pkg.freebsd.org.2013102301... done
Installing pkg-1.21.3...
Extracting pkg-1.21.3: 100%
Updating FreeBSD repository catalogue...
Fetching meta.conf: 100% 178 B 0.2kB/s 00:01
Fetching data.pkg: 100% 7 MiB 7.3MB/s 00:01
Processing entries: 100%
FreeBSD repository update completed. 35854 packages processed.
All repositories are up to date.

If the above command failed because of a “host not found” error then your DNS server or network
setup is somehow messed up. Did you get your name server working properly and validated? This is
the first time you’re really using it outside your OpenBSD VM.

Now that we actually have pkg installed instead of just the placeholder, you can run pkg with its info
verb to show the list of installed ports and packages.

$ pkg info
pkg-1.21.3 Package manager

Not much, but it’s a start. Just like on OpenBSD, FreeBSD installs third-party software and software
under /usr/local to keep it separate, so local versions of tools can be prioritized over built-in
operating system defaults.

11. A copy of the ports tree was offered to us during installation, but we chose not to accept. That version
of the ports tree was a “release” of the ports tree, with no versioning data included, and thus no real
capability to update it. We’re going to want to update it, so we’re going to use a rolling version of the
ports tree.

OpenBSD uses a source code versioning system, cvs, to check out and keep a copy of OpenBSD’s ports
tree up to date. As we mentioned before, FreeBSD used to have its own tool for keeping a rolling copy
of the ports tree up to date, but now FreeBSD uses version control as well. The ports tree is little more
than a large tree of shell scripts, so using source code control tools for this is the right tool for the job.
FreeBSD has leapt ahead of OpenBSD by using the modern git source control tool instead of the
antiquated cvs, which was designed in 1986.

 CS 470 Lab 2

 14

Use su to become root again if needed, and install git.

pkg install git

Note that FreeBSD updates its repository “catalogue,” the local cache of available packages, with each
invocation, and that dependency checking is done for us. I’ve trimmed the following output to cut out
all the dependencies; don’t worry if your output has minor differences.

Updating FreeBSD repository catalogue...
FreeBSD repository is up to date.
All repositories are up to date.
Updating database digests format: 100%
The following 37 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
 …
 git: 2.48.1
 …

Number of packages to be installed: 35

The process will require 326 MiB more space.
56 MiB to be downloaded.

Proceed with this action? [y/N]:

After you key in another y to confirm the operation, you’ll see it first download (“fetch”) the packages,
then extract and install each of them. After the lot of them is done, you’ll see the following.

[37/37] Installing git-2.48.1...
===> Creating groups.
Creating group 'git_daemon' with gid '964'.
===> Creating users
Creating user 'git_daemon' with uid '964'.
[37/37] Extracting git-2.48.1: 100%
=====
Message from python311-3.11.11:

--
Note that some standard Python modules are provided as separate ports
as they require additional dependencies. They are available as:

py311-gdbm databases/py-gdbm@py311
py311-sqlite3 databases/py-sqlite3@py311
py311-tkinter x11-toolkits/py-tkinter@py311
=====
Message from git-2.48.1:

--
If you installed the GITWEB option please follow these instructions:

In the directory /usr/local/share/examples/git/gitweb you can find all files to
make gitweb work as a public repository on the web.

All you have to do to make gitweb work is:
1) Please be sure you're able to execute CGI scripts in
 /usr/local/share/examples/git/gitweb.
2) Set the GITWEB_CONFIG variable in your webserver's config to
 /usr/local/etc/git/gitweb.conf. This variable is passed to gitweb.cgi.
3) Restart server.

 CS 470 Lab 2

 15

If you installed the CONTRIB option please note that the scripts are
installed in /usr/local/share/git-core/contrib. Some of them require
other ports to be installed (perl, python, etc), which you may need to
install manually.

Just like when installing third-party software in OpenBSD, with either the ports tree or the package
manager, in FreeBSD the port maintainer can also give you a heads up after the end of the installation
process. This time, none of the messages left behind are pertinent to anything we’ll be doing – we are
neither using the referenced py311-* modules nor are we setting up a git server – but always be
vigilant and read what your system says to you. Also, note that git came along with its own service
account and group.

The above output is provided for context; you will start to see the paths of ports listed, and this whole
process will take a few minutes. Not a really long time … just a few minutes. We’re grabbing a very
large set of small files from online sources.

12. Now, we install the ports tree.

git clone --depth=1 https://git.FreeBSD.org/ports.git /usr/ports

This would normally take a while, on the order of an hour or so, even with a fast internet connection.
However, since we don’t care about the commit history and only want the latest state of the
repository, we specify --depth=1 and git only grabs the most recent state of the main branch. With
git, we also get brief output showing us how far along the operation is, and how fast it’s moving. cvs
and portsnap just gave us a long list of files scrolling by, and no real idea of how far along we were in
the process. Unfortunately, there’s a long delay at the end of the process, after “checking objects.”
Let it run until you get a command line back.

13. Now let’s install sudo, so that you don’t have to walk around as root. Run the following command …

for the last time here, I’m going to remind you the pound sign prompt means that you ran su to
become root, like in the prior step, then you type the command after it … don’t type the $ or the # …

cd /usr/ports/security/sudo && make install

… and yes, I want you to use the ports tree and compiler for this build, not the package manager, for
the purpose of demonstrating some differences between FreeBSD and OpenBSD.

You will notice FreeBSD building pre-requisites first, and at a certain point during the installation, you’ll
see a menu like this …

 CS 470 Lab 2

 16

… where FreeBSD has selectable features for software in the ports tree, it will present you this screen
to allow you to choose the options. Some of you have noted OpenBSD’s by-default inclusion of the
“insults” option … this is the code that pokes fun at you when you fat-finger your password. I have
NOT chosen LDAP here amongst the features here, because sudo worked just fine without making it
aware of LDAP on OpenBSD.

Select “OK” when you’re done looking around here.

You may still be asked to select options for a couple dependencies after that, so don’t walk away for
too long … come back soon. This can be dealt with in future ports compiles by defining the macro
BATCH on the command line (as in make -DBATCH install).

‼ IMPORTANT REMINDER: when an error happens while building ports, scroll upward to find the very
first error message. The last is often the effect of a resulting cause, or a resulting cause of a resulting
cause, and we want to know where the problems began, the “root cause.” This is why we often send
output to a file, and prefer to SSH into our VM and use software-based terminals instead of the console
… it makes it way, way easier to scroll back to find the root cause of a problem.

If you get the error Invalid configuration `arm64-portbld-freebsd14.2': machine `arm64-
portbld' not recognized … please let me know. For some reason, I seem to be the only one ever
affected. If and only if you get this build error, also check out this page.

You can now type exit to quit your root shell (that you started with su). Now that we have sudo
installed, you don’t need to be root all the time, just to put sudo in front of commands you want to be
run as root.

‼ IMPORTANT NOTE: typos with sudo can be just as painful as typos on a root command line. ALWAYS
double check commands to be run with elevated privileges before hitting the return key.

https://hauweele.net/~gawen/blog/?p=2717

 CS 470 Lab 2

 17

14. Next, let’s install bash. From here on out, if you’d rather use pkg to get quicker results for adding
software, be my guest. If you want to install from the binary package …

$ sudo pkg install bash

… if you want to build from source …

$ cd /usr/ports/shells/bash && sudo make install

sudo will ask you for your password, and again, this is your user account password, not the root
password you configured at installation. Unless you did something different from me, you’re
presented with the following error message:

failsafe is not in the sudoers file.
This incident has been reported to the administrator.

Oops, looks like we need to set up sudo first. Become root again, with su, and run …

visudo

… note how FreeBSD puts configuration files that would ordinarily go in /etc into /usr/local/etc for
software installed from ports and packages. While you’re editing the sudoers file in vi, uncomment
the line allowing the wheel group to run any command, by removing the pound sign at the beginning …
but not the line allowing them to do so without a password.

Note that the sudoers file is treated with the utmost caution … the permissions on this file cause it to
be opened in read-only mode in vi …

root@freebsd:/home/failsafe # ls -l /usr/local/etc/sudoers
-r--r----- 1 root wheel 4747 Jun 11 01:09 /usr/local/etc/sudoers

… so you will have to use a bang (!) after :wq to tell vi that you REALLY want to write out the file and
bypass its read-only permissions, even as root.

15. Now that we’ve fixed sudo, let’s try to install bash again.

…
The following 1 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
 bash: 5.2.37

Number of packages to be installed: 1

The process will require 9 MiB more space.
2 MiB to be downloaded.

Proceed with this action? [y/N]: y
[1/1] Fetching bash-5.2.37.pkg: 100% 2 MiB 1.8MB/s 00:01
Checking integrity... done (0 conflicting)
[1/1] Installing bash-5.2.37...
[1/1] Extracting bash-5.2.37: 100%

 CS 470 Lab 2

 18

Piece of cake. Now we have bash, and like in OpenBSD, you can use the chsh command to change
your shell to /usr/local/bin/bash. Note that chsh drops you into a vi window where you’re
expected to alter a temporary file, which gets parsed and read back into /etc/passwd and
/etc/master.passwd, like in OpenBSD.

When the ports tree or package manager installs a shell in FreeBSD, it’s added to the file /etc/shells,
which contains the list of acceptable values for a user’s login shell in /etc/passwd. Since bash has
been installed to /usr/local/bin, it matches what we already have in LDAP.

16. Next, let’s add GnuPG. Again, we need this on every VM for the grading software later in the class.

$ sudo pkg install gnupg

Please feel free to install from package or build from source using the ports tree … again, they are
interchangeable.

$ cd /usr/ports/security/gnupg && sudo make -DBATCH install

GnuPG has a lot of dependencies, so once it’s started running, this might be a good time to grab
something to drink, stretch, or do whatever you do if you chose to give your computer a workout and
compile it from source.

17. Let’s install the root CA certificates package, ca_root_nss. Since this is just a package of certificate
files, there’s not much to compile … just use pkg.

$ sudo pkg install ca_root_nss

Scanning /usr/share/certs/untrusted for certificates …
Scanning /usr/share/certs/trusted for certificates …
Scanning /usr/local/share/certs for certificates …
…
FreeBSD does not, and can not warrant that the certification authorities
whose certificates are included in this package have in any way been
audited for trustworthiness or RFC 3647 compliance.

Assessment and verification of trust is the complete responsibility of
the system administrator.

This package installs symlinks to support root certificate discovery
for software that either uses other cryptographic libraries than
OpenSSL, or use OpenSSL but do not follow recommended practice.

If you prefer to do this manually, replace the following symlinks with
either an empty file or your site-local certificate bundle.

 * /etc/ssl/cert.pem
 * /usr/local/etc/ssl/cert.pem
 * /usr/local/openssl/cert.pem

Since we’ve already set up a root CA in lab 1b, you should be able to understand this message and
what it’s telling you about trusting other CA certificates. If you don’t, read up and make sure you do.
Of course, we’re going to be touching the files this message references.

 CS 470 Lab 2

 19

18. Now, let’s install some mail server software. A piece of software for getting mail to and in between
mail servers (that is, implementing the SMTP protocol), sendmail, is already included with FreeBSD.
We just need software to implement mail folders for, and accept delivery of, mail messages. Let’s
install dovecot.

$ sudo pkg install dovecot

If you’d like to build from source instead …

$ cd /usr/ports/mail/dovecot && sudo make install

You should take notice of feedback from ports and packages when they install on FreeBSD. The output
of installation payloads often includes pertinent information for running the software correctly, more
securely, and for getting it running in the first place. As you can see, all these are included in the
message from dovecot.

…

[3/3] Installing dovecot-2.3.21.1_1...
===> Creating groups.
Creating group 'dovecot' with gid '143'.
Creating group 'dovenull' with gid '144'.
===> Creating users
Creating user 'dovecot' with uid '143'.
Creating user 'dovenull' with uid '144'.
[3/3] Extracting dovecot-2.3.21.1_1: 100%
--
Message from dovecot-2.3.21.1_1:

--
You must create the configuration files yourself. Copy them over
 to /usr/local/etc/dovecot and edit them as desired:

 cp -R /usr/local/etc/dovecot/example-config/* \
 /usr/local/etc/dovecot

 The default configuration includes IMAP and POP3 services, will
 authenticate users agains the system's passwd file, and will use
 the default /var/mail/$USER mbox files.

 Next, enable dovecot in /etc/rc.conf:

 dovecot_enable="YES"
…

dovecot is installed. There are some warnings that followed this message; I’m not putting them here
because I’m telling you about them here and now and I don’t anticipate that we’ll step on them, but
you should read them anyways, because it’s a good practice, and just in case one of these settings
looks tempting later for some reason in your exploratation with dovecot, Very similarly to how we
turned on services in OpenBSD, we’ll enable it as suggested in /etc/rc.conf shortly … but first we
need to set up a user to receive mail.

Speaking of users, the prior step also installed the OpenLDAP client package for me. If it didn’t also for
you, we’ll be dealing with that in a couple of steps.

 CS 470 Lab 2

 20

part three: configuring LDAP login

Now let’s get our new FreeBSD instance plugged into LDAP, so we can make use of all our users and groups.

!! THE WARNINGS FROM LAB 1B ABOUT LOCKING YOURSELF OUT OF YOUR VM … THEY APPLY AGAIN HERE.
You may want to keep a root shell open in a terminal window throughout this section, until you’re sure it
works. You may have to go back into single-user mode if you really mess up while configuring authentication.

Single-user mode works the same here in FreeBSD as in OpenBSD; you will have to remount your root
filesystem read/write to change anything and set up your terminal to use more or vi … but you should know
what to do, and you’ve been warned now.

19. Before we perform authentication over a network connection we always need to provide for
encryption. The LDAP software we’re about to set up here is a client, and doesn’t need its own
certificate, but it does need to know that it trusts the LDAP server’s certificate.

Just like OpenBSD, FreeBSD stores a pile of CA certificates at /etc/ssl/cert.pem … and just like we
did on OpenBSD, we’re going to add our new CA certificate to it.

$ scp -p openbsd:/home/pki/data/cacert.pem ~failsafe

Note that because you are failsafe on this computer, the SSH client tries to log you in as failsafe there,
unless you tell it otherwise.

Please also note what the SSH client is telling you here. Because we did not use something like the CA
to sign our OpenBSD VM’s SSH server key pair, it’s offering us a key fingerprint (really, a SHA256 hash)
that we can use to go make sure we’re really talking to the computer we want to talk to, and provide
some (not perfect) assurance that nobody is eavesdropping our network traffic.

The authenticity of host 'openbsd.cs470.internal (10.42.77.71)' can't be
established.
ED25519 key fingerprint is SHA256:3/KnJPOxA4Q2cp3O2A84MT5onc0fvNcwuxBpDQwmLo0.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'openbsd.cs470.internal' (ED25519) to the list of known
hosts.
cacert.pem 100% 7091 1.5MB/s 00:00

The presumption made here is that a user of any given system has another way of validating the key,
that it’s worth the time involved in doing so. Users generally DO have the ability to read the public
pieces of SSH server configuration in /etc/ssh … take EDORAS as proof, this is just the default
configuration of those files, and it makes sense for it to be this way.

$ ssh edoras.sdsu.edu ls -l /etc/ssh
total 1
-rw-r--r-- 1 root root 577388 Aug 14 2024 moduli
-rw-r--r-- 1 root root 1770 Aug 14 2024 ssh_config
drwxr-xr-x 2 root root 27 Jan 6 02:31 ssh_config.d
-rw------- 1 root root 4741 Sep 18 09:39 sshd_config
-rw------- 1 root root 4404 Jan 3 2017 sshd_config.R
-rw------- 1 root root 4315 Aug 14 2024 sshd_config.rpmnew

 CS 470 Lab 2

 21

-rw-r-----. 1 root ssh_keys 227 Mar 17 2016 ssh_host_ecdsa_key
-rw-r--r--. 1 root root 162 Mar 17 2016 ssh_host_ecdsa_key.pub
-rw-r-----. 1 root ssh_keys 387 Mar 17 2016 ssh_host_ed25519_key
-rw-r--r--. 1 root root 82 Mar 17 2016 ssh_host_ed25519_key.pub
-rw-r-----. 1 root ssh_keys 1679 Mar 17 2016 ssh_host_rsa_key
-rw-r--r--. 1 root root 382 Mar 17 2016 ssh_host_rsa_key.pub

This means that all you have to do is log into that other computer, for which you have presumably
already validated the encryption key. On your OpenBSD VM, generate the hash from the public key
file in the SSH server configuration file. Ordinarily, you should do this before answering yes when SSH
asks if you still want to connect.

$ ssh-keygen -lf /etc/ssh/ssh_host_ed25519_key.pub
256 SHA256:3/KnJPOxA4Q2cp3O2A84MT5onc0fvNcwuxBpDQwmLo0 root@openbsd.localdomain
(ED25519)

Because the two hashes match, you know it’s the right key. This provides some assurance that the
traffic between the two isn’t being eavesdropped. Sometimes things happen – like installing an SSH
software upgrade or re-installing a computer’s operating system – that cause the primary SSH key to
change. Once we accept an SSH key for a system, we only hear about it when it changes.

We have to go through this pain if we want to validate keys with SSH, because we’re not using
certificates typically, out of the box with SSH. SSH host keys aren’t signed by a trusted third party, so
there is no chain of trust to validate keys with … and this is why we go through the additional pain of
setting up certificates with other services. Certificates can be used for both host keys and
authentication with SSH, but I’ve rarely seen it set up. This system of manual validations seems to be
considered good enough for most, apparently.

Back to the CA cert task … on your FreeBSD VM, let’s look in /etc/ssl ...

lrwxr-xr-x 1 root wheel 43 Feb 21 17:10 cert.pem ->
../../usr/local/share/certs/ca-root-nss.crt
drwxr-xr-x 2 root wheel 3072 Feb 26 13:14 certs
-rw-r--r-- 1 root wheel 12336 Nov 29 02:21 openssl.cnf
drwxr-xr-x 2 root wheel 1536 Feb 26 13:14 untrusted

… as you can see it’s got a cert.pem file, but FreeBSD also has a directory full of certificates here in
/etc/ssl/certs that will be more resilient to OS updates, so we’re going to drop our certificate in
there …

$ sudo cp -p ~failsafe/cacert.pem /etc/ssl/certs/CS470.crt

According to convention, this directory also wants a symbolic link to the certificate, named for a short
hash/fingerprint of the certificate …

$ openssl x509 -noout -hash -in ~failsafe/cacert.pem
8550b8fe

… let’s do this the Unix way, instead of copying and pasting …

$ sudo ln -s CS470.crt /etc/ssl/certs/`openssl x509 -noout -hash -in

 CS 470 Lab 2

 22

~failsafe/cacert.pem`.0

… note that there are no spaces before and and after the backticks in the nested command … we want
it to be a part of the absolute path we’re referring to under /etc/ssl/certs.

$ ls -l /etc/ssl/certs/ | grep CS470
lrwxr-xr-x 1 root wheel 9 Feb 26 16:19 8550b8fe.0 -> CS470.crt
-rw-rw-r-- 1 failsafe failsafe 7091 Feb 8 12:51 CS470.crt

You should now be able to verify the certificate on your OpenBSD VM’s LDAP server via OpenSSL, and
with all software that uses OpenSSL on your FreeBSD VM:

$ openssl s_client -connect openbsd.cs470.internal:636 | grep -i -e verify
depth=1 C = US, ST = Californistan, O = SDSU CS470, CN = CS470 2025 Spring CA
verify return:1
depth=0 C = US, ST = Californistan, O = SDSU CS470, CN = openbsd.cs470.internal
verify return:1
Verify return code: 0 (ok)

Let’s also save the certificate file in /etc/ssl for safe keeping. This way, if we ever need to rebuild the
cert trust database, we’ll be happy to have a copy of the only custom certificate right there …

$ sudo mv ~failsafe/cacert.pem /etc/ssl/
$ sudo chown root:wheel /etc/ssl/cacert.pem

20. In what should be an unsurprising next move, we’re going to install OpenLDAP, specifically, the client
for OpenLDAP version 2.6, if it wasn’t already installed along with dovecot a couple of steps ago.
Choose your weapon, either building from source …

$ cd /usr/ports/net/openldap26-client && sudo make -DBATCH install

… or installing from the package …

$ sudo pkg install openldap26-client

… either way, you should see something like the following …

Message from openldap26-client-2.6.9:

--
The OpenLDAP client package has been successfully installed.

Edit
 /usr/local/etc/openldap/ldap.conf
to change the system-wide client defaults.

Try `man ldap.conf' and visit the OpenLDAP FAQ-O-Matic at
 http://www.OpenLDAP.org/faq/index.cgi?file=3
for more information.

… or something like this if OpenLDAP’s installation was taken care of previously.

The most recent versions of packages are already installed

 CS 470 Lab 2

 23

As you might imagine, we’re going to be taking OpenLDAP up on its invitation shortly.

21. FreeBSD also requires two more ports to be installed in order to authenticate using an LDAP directory,
pam_ldap, the PAM (pluggable authentication modules) support for LDAP, and nss_ldap, name service
switch (user and group mapping and more) support for LDAP. Either from source …

$ cd /usr/ports/security/pam_ldap && sudo make install

… or …

$ sudo pkg install pam_ldap
…

===> Installing for pam_ldap-186_2
===> Checking if pam_ldap is already installed
===> Registering installation for pam_ldap-186_2
Installing pam_ldap-186_2...
Edit /usr/local/etc/ldap.conf in order to use this module. Then
create a /usr/local/etc/pam.d/ldap with a line similar to the following:

login auth sufficient /usr/local/lib/pam_ldap.so

… now, the other, from source …

$ cd /usr/ports/net/nss_ldap && sudo make install

… or from package …

$ sudo pkg install nss_ldap

I’m leaving this here, just in case you should run into this bug, but I doubt you will. Read this, but
unless you hit the bug somehow, there’s nothing else for you to do in this step but read.

cc -DHAVE_CONFIG_H -I. -I/usr/local/include -DLDAP_REFERRALS -DLDAP_DEPRECATED -
DPIC -D_REENTRANT -O2 -pipe -DHAVE_LOGIN_CLASSES -DLDAP_DEPRECATED -fstack-
protector-strong -fno-strict-aliasing -Wall -fPIC -MT ldap-init-krb5-cache.o -MD -
MP -MF .deps/ldap-init-krb5-cache.Tpo -c -o ldap-init-krb5-cache.o ldap-init-krb5-
cache.c
ldap-init-krb5-cache.c:102:10: fatal error: 'profile.h' file not found
#include <profile.h>
 ^~~~~~~~~~~
1 error generated.
gmake[3]: *** [Makefile:501: ldap-init-krb5-cache.o] Error 1
gmake[3]: Leaving directory '/usr/ports/net/nss_ldap/work/nss_ldap-265'
gmake[2]: *** [Makefile:396: all] Error 2
gmake[2]: Leaving directory '/usr/ports/net/nss_ldap/work/nss_ldap-265'
===> Compilation failed unexpectedly.
Try to set MAKE_JOBS_UNSAFE=yes and rebuild before reporting the failure to
the maintainer.
*** Error code 1

This error appeared over the summer of 2023, first for some students who took a while to get to lab 2,
because it wasn’t initially there when I initially updated this lab for that summer class, and we had to
work around this through the fall semester. This happened because one of the FreeBSD port
maintainers was modifying this port’s configuration scripts to better detect FreeBSD and add support

 CS 470 Lab 2

 24

for Kerberos. You can’t see it now, because git is stepping on file timestamps, but could see the
offending change then by looking in the files subdirectory of the port directory …

$ ls -lt files
total 1
-rw-r--r-- 1 root wheel 1593 May 9 22:22 patch-configure.in
-rw-r--r-- 1 root wheel 236 Aug 14 2019 pkg-message.in
-rw-r--r-- 1 root wheel 9655 Aug 13 2018 bsdnss.c
-rw-r--r-- 1 root wheel 791 Aug 13 2018 patch-ldap-netgrp.c
-rw-r--r-- 1 root wheel 1027 Jul 23 2018 patch-Makefile.am
-rw-r--r-- 1 root wheel 875 Jul 23 2018 patch-ldap-ethers.c
-rw-r--r-- 1 root wheel 179 Jul 23 2018 patch-ldap-ethers.h
-rw-r--r-- 1 root wheel 648 Jul 23 2018 patch-ldap-pwd.c
-rw-r--r-- 1 root wheel 1371 Jul 23 2018 patch-login-classes
-rw-r--r-- 1 root wheel 292 Nov 13 2014 patch-ldap-grp.c
-rw-r--r-- 1 root wheel 1885 Nov 13 2014 patch-ldap-init-krb5-cache.c
-rw-r--r-- 1 root wheel 661 Jan 14 2014 patch-ldap-nss.c
-rw-r--r-- 1 root wheel 415 Jan 14 2014 patch-ldap-nss.h

… note that the t switch makes ls sort by time, and put the offending file (patch-configure.in) right
up top.

Note that on tracking ticket for this bug (https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=270465),
enterprising former CS 470 student Anna did a great job finding this page while doing her research.
Two workarounds are proposed here: to undo the offending commit, by Dutchman01, and the other,
by Einar Bjarni Halldórsson, is to turn off Heimdal (one of the two major distributions of Kerberos)
while building nss_ldap. This is the cleaner of the two fixes – it doesn’t modify the port files – and
allowed the package to build successfully.

First, the problem in the Makefile by manually disabling Kerberos (Heimdal).

$ sudo vi work/nss_ldap-265/Makefile

Add -DHEIMDAL=off to the end of the line defining the variable CPPFLAGS.

$ cd work/nss_ldap-265 && sudo make clean && cd ../.. && sudo make install

We have to go down into the work directory to run make clean, because if we tell the port’s Makefile
to make clean, it’ll delete the whole work directory, including the fix.

If you run into this bug, please let me know ASAP.

After you’ve installed it successfully, you should see the below. Note that 1.265_14 was the broken
version of the port … the underscore separates the FreeBSD port version number from the author’s
version number.

Message from nss_ldap-1.265_15:

--
The nss_ldap module expects to find its configuration files at the
following paths:

LDAP configuration: /usr/local/etc/nss_ldap.conf

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=270465

 CS 470 Lab 2

 25

LDAP secret (optional): /usr/local/etc/nss_ldap.secret

How helpful that each advertised where its configuration files are located, no? We’ll take them both
up on that as well, in turn. Also note that FreeBSD stores configurations for third-party software
installed by the ports tree under /usr/local/etc whereas OpenBSD puts both OS-bundled and post-
installed software configuration in /etc.

22. Configure the LDAP client utilities and libraries in /usr/local/etc/openldap/ldap.conf … they both
look at the same configuration file, and you’ve seen this OpenLDAP configuration file before (under
/etc as we just discussed) in lab 1b. You should know what to do with this file. Do it.

Make sure you aim TLS_CACERT at one of the instances of our root CA certificate that we installed
under /etc/ssl a couple steps ago.

23. Configure PAM LDAP login support. This starts in /usr/local/etc/ldap.conf.

Set host to the fully-qualified DNS domain name of your LDAP server, your OpenBSD VM.

Set the base parameter appropriately for our domain.

Add a new uri line with the following contents:
uri ldaps://openbsd.cs470.internal/

As FreeBSD’s own documentation (https://docs.freebsd.org/en/articles/ldap-auth/#client) advises,
uncomment the pam_login_attribute line to explicitly search for users in the directory where the
uid attribute in the directory is the username used in a login attempt.

Finally, make sure to uncomment either tls_cacertfile or tls_cacertdir and make sure it’s
properly aimed at the correct root CA cert file or trust anchor directory.

24. Let’s configure PAM itself. Since the first letter in PAM stands for “pluggable” you’ll be seeing this
again in Linux, and you’ll be configuring LDAP next to other modular authentication options.

Please insert this line …

auth sufficient /usr/local/lib/pam_ldap.so no_warn

… under the authentication line with pam_ssh.so in /etc/pam.d/imap, /etc/pam.d/sshd, and
/etc/pam.d/system.

25. The “name service switch” is a piece of software a lot of Unix systems, Solaris included, have used to

govern swapping out replacements for the built-in local user and group databases, and other local
configuration files. It stores its configuration in /etc/nsswitch.conf … use more to take a look.

Side note: the Mozilla Foundation, makers of Firefox, also make a well-known and widely-used library
for authentication and encryption called NSS (network security services) that performs overlapping

https://docs.freebsd.org/en/articles/ldap-auth/#client

 CS 470 Lab 2

 26

functions. A lot of people cross them up, but they’re not the same.

It turns out that nss_ldap uses the same configuration file as pam_ldap. Use more to check out
/usr/local/etc/nss_ldap.conf … indeed, the same file. So let’s get rid of nss_ldap’s separate
version of that file …

$ sudo rm /usr/local/etc/nss_ldap.conf

… and replace it with a hard link to the pam_ldap configuration file.

$ sudo ln /usr/local/etc/ldap.conf /usr/local/etc/nss_ldap.conf

Note that now they are both literally the same file.

$ ls -li /usr/local/etc/ldap.conf /usr/local/etc/nss_ldap.conf
1063062 -rw-r--r-- 2 root wheel 8730 Feb 26 17:46 /usr/local/etc/ldap.conf
1063062 -rw-r--r-- 2 root wheel 8730 Feb 26 17:46 /usr/local/etc/nss_ldap.conf

Make your LDAP user’s home directory, and make sure they own it.

$ sudo mkdir /home/peter
$ sudo chown 1001:1001 /home/peter

Now we’re going to actually have it start to look at LDAP for users and groups … so here’s a great time
to SSH into your FreeBSD VM, and start a spare root shell in another terminal tab or window in case
things get broken temporarily. Edit the file /etc/nsswitch.conf and change both group and
password (passwd) options from compat to files ldap … and save it.

Now test, especially before you log out of any root shells, just like you did in lab 1b … id and ls should
be good enough to tell whether it’s working or not. FreeBSD is way, way more forgiving if you goof this
up. If it failed on OpenBSD, we’d be locked out. If LDAP fails on FreeBSD, we just have to wait for LDAP
to time out … at least, that was what I saw.

Test logging into the console of your VM, in its VMware window, as both failsafe and your LDAP
user. Try logging in via SSH as both users. Test using id as in lab 1b to make sure all usernames and
group names resolve.

If anything doesn’t work, scour through /var/log on your FreeBSD VM.

26. Add your LDAP user to the operator group, in /etc/group on your FreeBSD VM.

Add the sudoers group to /usr/local/etc/sudoers.

Create your LDAP user’s .ssh directory and set up key-based authentication into your FreeBSD VM.

Configure your environment in your LDAP user account, and stop using the failsafe account. Make sure

 CS 470 Lab 2

 27

your LDAP user can exercise sudo rights if needed.

part four: configuring sendmail and dovecot

Typically nowadays, most – including myself – prefer a simpler-to-configure SMTP server, notably postfix.
However, FreeBSD is pure cane Berkeley Unix and so is sendmail, the great-granddaddy of all mail servers.
Both sendmail and its predecessor, delivermail, which used FTP to deliver e-mails, were originally authored
by Eric Allman during his time as a student at Berkeley. Eric Allman is married to Kirk McKusick, who he met at
Berkeley, and was mentioned in lab 1 for his work on Berkeley’s fast file system. Kirk owns the copyright on
the BSD daemon, and still works on Berkeley Unix via the FreeBSD project to this day. Eric still works on email,
on sendmail-derived products to this day, at email security company Proofpoint. The two have been together
for forty years, and are kind of the first couple of Berkeley Unix.

So BSD and sendmail grew up together, and (sadly) they remained together. OpenBSD didn’t replace it with
OpenSMTPd until 2013. Why do I say “sadly,” you ask? Personal opinion, of course, but for a peek into why I
think that, the stock sendmail configuration file is almost 60kb in FreeBSD, and it’s not really human-readable
beyond the first 25% of the file. Fortunately, we build it mostly from pre-configured macro files designed
specifically for the purpose of building sendmail configuration files.

Within your FreeBSD box, list the contents of /etc/mail … this is where all of sendmail’s configuration lives.

total 1
-rw-r--r-- 1 root wheel 6756 Nov 29 02:42 Makefile
-rw-r--r-- 1 root wheel 2822 Nov 29 02:42 README
-rw-r--r-- 1 root wheel 546 Nov 29 02:42 access.sample
-rw-r--r-- 1 root wheel 1612 Nov 29 02:42 aliases
-rw-r--r-- 1 root wheel 60145 Nov 29 02:42 freebsd.cf
-rw-r--r-- 1 root wheel 4392 Nov 29 02:42 freebsd.mc
-r--r--r-- 1 root wheel 41887 Nov 29 02:42 freebsd.submit.cf
-r--r--r-- 1 root wheel 912 Nov 29 02:42 freebsd.submit.mc
-r--r--r-- 1 root wheel 5988 Nov 29 02:42 helpfile
-rw-r--r-- 1 root wheel 247 Nov 29 02:23 mailer.conf
-rw-r--r-- 1 root wheel 159 Nov 29 02:42 mailertable.sample
-rw-r--r-- 1 root wheel 60145 Nov 29 02:42 sendmail.cf
-r--r--r-- 1 root wheel 41887 Nov 29 02:42 submit.cf
-rw-r--r-- 1 root wheel 486 Nov 29 02:42 virtusertable.sample

freebsd.cf is the configuration for a public-facing mail server able to receive mail. This configuration is
disabled by default in FreeBSD. freebsd.submit.cf is the configuration for the on-by-default internal
“submission” mail server that allows you to send mail outbound, provided that you link it up properly to an
upstream mail server that will accept your mail. Since over 95% of the e-mail on the internet today is spam,
this has become a very particular process, and one of the first checks is whether or not an e-mail contains a
legitimate source DNS domain name. Our little .internal network does not have one, so we’re not going to be
able to get mail outbound … but we’re going to learn what that looks like anyways.

The .mc files in /etc/mail are macro files used to generate the corresponding .cf configuration files, using
the macro processor m4, and the process is still sufficiently complicated that we have a Makefile to handle
invoking the macro processor and spitting out the file.

 CS 470 Lab 2

 28

27. As we’ve seen, the netstat command can be used for a variety of purposes; we’re going to go into it
in a little more depth this time.

The netstat command will translate IP addresses to host names using the DNS service and the file
/etc/hosts, and translate TCP and UDP port numbers using the file /etc/services. We’ve already
seen and edited /etc/hosts to implement static name service for our VMs on our host system, so now
let’s check out /etc/services.

TCP and UDP make use of 16-bit port numbers (0 to 65535), but many of these port numbers at the
low end are commonly associated with specific services, some of which we’re already familiar with:
HTTP (web pages), HTTPS (encrypted web pages), DNS (“domain”), SSH, and now SMTP.

$ egrep -w "^domain|^http|^https|^ssh|^smtp" /etc/services | more

This command should spit out about 20 lines of output from /etc/services, matching the four search
tokens within the quotation marks (in this context, the vertical bar character is a logical or operator).
This file is where a lot of subsystems will look for the name of a service associated with a particular
port. If the port number doesn’t have a name, you’ll just see the port number. Of course, this might
be what you want at any given point in time.

$ netstat -a | grep LISTEN

In the above command, the a switch asks it for the state of all active network sockets, including those
waiting for connections. We’re piping this through a grep for LISTEN, because this is how netstat
displays the services that are listening for incoming connections.

tcp4 0 0 *.ssh *.* LISTEN
tcp6 0 0 *.ssh *.* LISTEN

This output tells us that we’re running an SSH server on IPv4 and IPv6, on all IPs of this system (the
asterisk before .ssh where the an IP address would regularly go), and that’s it … so just the SSH service
is currently available to the network. This is sane, and good from a security perspective. Except I was
expecting to see this:

tcp4 0 0 localhost.smtp *.* LISTEN

Had we seen this line, it would tell you that there is a socket/port waiting for connections on the IP
address associated with the name localhost, on the SMTP service. SMTP is “Simple Mail Transfer
Protocol,” the language used by mail servers to exchange e-mail messages for almost 40 years now,
and localhost, is the loopback network adapter on every system, that allows a system to offer
network-based services to itself but not to other systems. This would have been the “submission” mail
server, configured by submit.cf in the directory listing of /etc/mail we just saw a minute ago. Since
the submission mail server is on loopback, it’s not connected to the mail flows on the rest of the
internet at large, and it can also only possibly accept mail from other users of the same system (you
have to be on the same system in some fashion to talk to its loopback adapter). In fact, you should be
able to see that some mail has already been delivered.

 CS 470 Lab 2

 29

$ ls -l /var/mail
total 1
-rw------- 1 cyrus cyrus 0 Feb 27 13:33 cyrus
-rw------- 1 dovecot dovecot 0 Feb 27 13:33 dovecot
-rw------- 1 dovenull dovenull 0 Feb 27 13:33 dovenull
-rw------- 1 failsafe failsafe 0 Feb 26 13:50 failsafe
-rw------- 1 git_daemon git_daemon 0 Feb 27 02:03 git_daemon
-rw--w---- 1 root mail 3894 Feb 27 03:47 root

/var/mail is where incoming email spool files reside for each user, and other programs can be used to
read and reply to them in place, or to download the messages to a mail client. Notably here, you can
see that on my system, the root user has about 20k of mail waiting. If you also have mail there – that
is, if the file size is not zero - you can look through this e-mail easily with the following command …

$ sudo more /var/mail/root

… and you should see a message warning the root user about your unauthorized use of sudo a few
steps ago, unless you did something differently. Also, as I told you in lecture, periodic cron jobs also
send their output via e-mail to the root user, and that means they’ll end up in this file.

Like I said, though, I didn’t see that line of output … so how was that mail delivered? This is the part of
the lab where Peter started to rejoice a bit, after a little bit of confusion. sendmail might have finally
been vanquished! First, I looked at /etc/defaults/rc.conf, which contains the default configuration
for a lot of startup services, as we discussed …

$ grep sendmail /etc/defaults/rc.conf | grep submit
sendmail_submit_enable="YES" # Start a localhost-only MTA for mail submission
sendmail_submit_flags="-L sm-mta -bd -q30m -ODaemonPortOptions=Addr=localhost"

That made it look like it should be enabled. ps auxww | grep sendmail seemed to agree it wasn’t
running. Then I found this in the FreeBSD 14.0 release notes (link presented previously) …

“The default mail transport agent (MTA) is now the Dragonfly Mail Agent (dma(8)) rather than
sendmail(8). Configuration of the MTA is done via mailer.conf(5). sendmail(8) and its configuration
remain available.”

… so it turns out FreeBSD has indeed started to move away from sendmail at last as well. dma, the
Dragonfly Mail Agent, is named for DragonFlyBSD, a fork of FreeBSD where it was created. According
to its man page, it does its job without opening up network listeners. It all makes sense now.

Take a look at /etc/mail/mailer.conf … let’s move it out of the way, and replace it with a ready-to-
go copy of the file set up for sendmail.

$ sudo mv /etc/mail/mailer.conf /etc/mail/mailer.conf.dma
$ sudo cp -p /usr/share/examples/sendmail/mailer.conf /etc/mail/mailer.conf

I’m sure dma is much better than sendmail … there’s so much room for improvement on the bloat and
configuration complexity that comes with sendmail – look at /etc/dma/dma.conf, 1/30th the size of
sendmail.cf – but I don’t feel like rebuilding the wheel here and now. After you’ve made this change,

https://man.freebsd.org/cgi/man.cgi?query=dma&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=sendmail&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=mailer.conf&sektion=5&format=html
https://man.freebsd.org/cgi/man.cgi?query=sendmail&sektion=8&format=html

 CS 470 Lab 2

 30

go ahead and sudo reboot your FreeBSD VM.

28. Let’s save a copy of the distribution’s default .cf and .mc files for a public-facing mail server.

$ sudo cp -p /etc/mail/freebsd.cf /etc/mail/freebsd.cf.orig
$ sudo cp -p /etc/mail/freebsd.mc /etc/mail/freebsd.mc.orig

The -p switch with the cp (“copy”) command tells it to preserve timestamps, permissions, and
ownership of the things it copies … this information is often pertinent, especially when making archival
copies of things, in case you make a change that breaks stuff. If you make a mistake and need to come
back, of course just reverse the order of the filename arguments in the cp command(s).

29. Let’s edit the sendmail macro file to aim it at dovecot, instead of those mail spool files in /var/mail.
There are client-side mail servers like popper for POP (“post office protocol”), but this is primitive, and
we want to be able to set up an e-mail server that lets our user create and manage folders, and
synchronize multiple mail clients … so we need IMAP.

$ sudo vi /etc/mail/freebsd.mc

In this file, you’ll notice dnl all over the place … this denotes a comment in the m4 macro processor.

Now find the line that says …

MAILER(local)

… this is the macro that defines delivery to local mail spool files in /var/mail. Just prior to that line,
insert the following three lines …

FEATURE(`local_procmail', `/usr/local/libexec/dovecot/deliver',`deliver -d $u')
MODIFY_MAILER_FLAGS(`LOCAL', `-f')
MAILER(procmail)

… note the ticks are not all the same here, and save the file. We just added delivery to recipient
mailboxes via dovecot to the macro file that builds the mail server configuration.

30. Now we’re going to build a new sendmail configuration file from the macro file.

$ cd /etc/mail && sudo make freebsd.cf

The output from make should show you that it’s invoking the macro processor m4, referring to a pool of
sendmail configuration information in /usr/share/sendmail/cf, processing freebsd.mc, and
sending the output to freebsd.cf. Let’s look at the difference between the default freebsd.cf
(backed up to the .orig file above).

$ diff /etc/mail/freebsd.cf.orig /etc/mail/freebsd.cf

The output of the diff (“difference”) command uses the greater-than and less-than characters to
point “left” and “right” for the two filenames it was handed to compare on the command line above.

 CS 470 Lab 2

 31

You should see some comments at the top of the file (the numbers are line numbers) showing that you
built the file locally, as root, in /etc/mail, and some additional configuration near the end of the file
(it started on line number 1816 for me) to add procmail mailer information and dovecot information
in the place of /usr/libexec/mail.local, the program that delivers into /var/mail.

31. Install your new sendmail configuration file. (Note: you should still be in /etc/mail.)

$ sudo make install-cf

32. We need to tell sendmail the domain names it must accept and locally deliver e-mail for, on this
FreeBSD VM. We’re going to create the file /etc/mail/local-host-names …

$ sudo vi /etc/mail/local-host-names

… and insert the following into it:

cs470.internal
openbsd.cs470.internal
freebsd.cs470.internal

33. Time to configure dovecot.

$ cd /usr/local/etc/dovecot && ls -l

Note that there’s a README file here. When you find one, it’s there for a purpose.

$ more README

So … there is a bunch of stuff in the directory example-config, because we can do a preposterous
amount of things with dovecot – and I recommend you use cd and ls to poke around a bit – but we’re
just going to take a subset of it up a directory level to configure dovecot.

$ sudo cp -p example-config/dovecot.conf .

$ more dovecot.conf

Note that pretty much everything in here is commented out. Lines that are commented out typically
contain the compiled-in defaults for each option, and the file ends with statements including
everything in a local.conf file and conf.d/*.conf. This is fairly common nowadays, to break up the
configuration files of services into files that contain logically separate subsets of the configuration.

First, let’s make a conf.d directory here, in the right place …

$ sudo mkdir conf.d

… and then let’s copy out the pieces of the example configuration that we need, leaving the example
configuration untouched, in case we need to refer to it again, or to grab a clean copy. Note: the
following command will work just fine if you’re using bash, csh, or tcsh, but may barf if you’re using
another shell.

 CS 470 Lab 2

 32

$ sudo cp -p example-config/conf.d/{10-auth.conf,auth-system.conf.ext,10-
mail.conf,20-imap.conf} ./conf.d

If you’re using another shell, you’ll almost certainly get a “file not found” error, and will want to
separately copy each of the four config files into conf.d.

Now let’s tweak the files to set up dovecot as we want it for our mail server here on our lab networks.

First, edit dovecot.conf, and add a protocols line (leave the sample protocols line with all the
options intact) just below the sample protocols line, saying that we just want the imap protocol to be
served.

In conf.d/10-auth.conf, add login to the end of the line for auth_mechanisms. This tells it that we
allow operating system users to log in to the mail service.

Finally, edit conf.d/10-mail.conf. Uncomment the line for the setting mail_location, and set it
like so:

mail_location = maildir:/var/spool/imap/%u

This tells dovecot to create a directory for each user under /var/spool/imap, with the username as
the name of the folder. Since we’ve referred to this directory, let’s create it, associate it with the
dovecot subsystem pseudouser, the group mail, and allow everybody to write there, but nobody to
delete anything that doesn’t belong to them. (Remember the sticky bit from lab zero?)

$ sudo mkdir -m 1777 /var/spool/imap
$ sudo chown dovecot:mail /var/spool/imap

34. Time to make a certificate for dovecot. First, let’s copy the OpenSSL configuration file over to this
system from our OpenBSD VM.

$ scp -p openbsd:/etc/ssl/openssl.cnf /tmp/openssl.cnf

Move FreeBSD’s default OpenSSL configuration file out of the way.

$ sudo mv /etc/ssl/openssl.cnf /etc/ssl/openssl.cnf.orig

Now, move the file from OpenBSD into its place. Same OpenSSL, same config file, all our defaults in
place.

$ sudo mv /tmp/openssl.cnf /etc/ssl/openssl.cnf
$ sudo chown root:wheel /etc/ssl/openssl.cnf

We’re not done, though … /etc/ssl/openssl.cnf says to request certificates with the
subjectAltName of our OpenBSD VM. Edit the file, and change the hostname at the very end to
freebsd.cs470.internal.

 CS 470 Lab 2

 33

35. Time to generate a key … first, make a root-only private directory …

$ sudo mkdir -m 700 /etc/ssl/private

… generate a key …

$ sudo openssl genrsa -out /etc/ssl/private/freebsd.key 3072

… and then generate a certificate request.

$ sudo openssl req -new -key /etc/ssl/private/freebsd.key -out /etc/ssl/freebsd.csr

You should recognize the next steps. For the common name, use freebsd.cs470.internal. Once
the CSR file is cooked, copy it over to your OpenBSD VM for the CA to sign it.

$ scp -p /etc/ssl/freebsd.csr openbsd:/home/pki/newreq.pem

Consider yourself warned: at some point soon here, I’m going to stop spoon-feeding you commands
for moving files around. You should be able to infer the CSR filename from the prior command, how to
use your PKI commands, and how to do various things from prior labs.

Now, log into your OpenBSD VM as your LDAP user and sign the certificate.

$ cd /home/pki && CA.pl -sign

Take a moment to validate the CSR has all the information you need entered into it correctly, especially
the hostname in both places (the common name and the subjectAltName), and sign the certificate.
Copy it back from your OpenBSD VM to your FreeBSD VM.

$ scp -p newcert.pem freebsd:/tmp/freebsd.pem

Again, clean up the new certificate and the CSR here on OpenBSD VM, as in lab 1b.

Back on your FreeBSD VM, let’s get the certificate into the right place and into the dovecot
configuration.

$ sudo mv /tmp/freebsd.pem /etc/ssl/freebsd.pem

Set its permissions properly.

$ sudo chown root:wheel /etc/ssl/freebsd.pem

Edit /usr/local/etc/dovecot/dovecot.conf again, and add the following lines near the front of the
file, right after the protocols line you set up earlier.

ssl = required
ssl_cert = </etc/ssl/freebsd.pem
ssl_key = </etc/ssl/private/freebsd.key
ssl_ca = </etc/ssl/cacert.pem

 CS 470 Lab 2

 34

We could also use this certificate to encrypt e-mail to sendmail as it’s in transit between SMTP clients
on the other VMs and our target SMTP recipient for everything here on FreeBSD. The certificate we
just set up for the IMAP service protects passwords, but we’re not e-mailing any state secrets in cron
jobs between our VMs, nor do we have to authenticate for that server-to-server mail traffic, so we’ll
take a pass.

36. Let’s set up authentication for dovecot. dovecot would always complain in prior iterations of the class
about not having a pam.d file, but this time our client-side connection issues didn’t clear up until we
did this:

$ sudo cp -p /etc/pam.d/sshd /etc/pam.d/dovecot

Edit the file and make sure all configuration line references to ssh are commented out – we don’t want
to use it to log into the IMAP server – and change the header comment too.

37. Now, enable both sendmail and dovecot. Edit /etc/rc.conf and add the following three lines:

dovecot_enable="YES"
sendmail_enable="YES"
sendmail_flags="-bd -q30m"

The sendmail flags tell it to become a daemon (a server, -bd), and to run its queue every 30 minutes
(-q30m) to try to redeliver mail that somehow gets stuck there.

Now, let’s start up both services.

$ sudo /etc/rc.d/sendmail start
$ sudo /usr/local/etc/rc.d/dovecot start

Note that sendmail is started from scripts in /etc/rc.d, because it was bundled with the operating
system. dovecot is started under /usr/local, because it was installed from the ports tree. We are
restarting sendmail, because some of its components were already running (remember the
submission mail server?), but dovecot has never run before.

Run netstat -a | grep LISTEN again. Look a little different? How about if you add in the n switch?

38. Test your mail server.

$ echo "test" | mail -s test peter

Naturally, substitute in your username for mine. Now check the mail subsystem log.

$ sudo tail /var/log/maillog

tail shows the end of a file, in this case, the log for the mail subsystem. You should see a line showing
the mail being received by the submission sendmail instance, another by the other sendmail we set

 CS 470 Lab 2

 35

up, accepting it for delivery, and finally, dovecot delivering it into your user’s inbox. Listing the
contents of /var/spool/imap should also show that some stuff has been created.

39. Let’s configure your OpenBSD VM’s SMTP server, so that it’s able to send out mail. On your OpenBSD
system, use sudo and vi to create the file /etc/mail/mailname … this file did not exist on my
OpenBSD VM prior to this step … and put openbsd.cs470.internal into it. That’s it, nothing else.
Just one line, just your OpenBSD VM's fully-qualified DNS domain name, then save it out.

These last two things, adding an MX record for the OpenBSD VM and editing smtpd.conf, I had to do
in 2020, didn’t have to do in 2021, and did have to do in 2022. Neither proofreader required these last
two steps for a working setup this year. If you don’t mind, try only setting mailname, skip below to the
rcctl command, and see if it works overnight.

Also on your OpenBSD system, edit the zone file for cs470.internal, increment the serial number, and
add a MX record for your OpenBSD VM, pointing to your FreeBSD VM. After you make this change,
restart named.

Still on your OpenBSD VM, edit /etc/mail/smtpd.conf … and let’s comment out the first
uncommented line beginning with “match from local for local”… that is, insert a pound sign (#) at the
beginning of the line. Here, we tell smtpd that there is no local mail delivery, period.

Save, and restart smtpd to make sure it notices the changes we just made …

$ sudo rcctl restart smtpd

40. Let’s tell this FreeBSD system who its sysadmins are; for a variety of reasons, you don’t want root
checking mail.

$ sudo vi /etc/mail/aliases

The aliases file is a list of mail re-direction rules. You’ll notice that e-mail addressed to pretty much
every subsystem of our FreeBSD VM is routed to root. However, all that mail going to root – it’s not all
that much – but we don’t want it going to the root account’s mail spool. We want it to go to the
system administrators of our system, each of us, and NOT to have to log in as root via a mail server to
grab it.

There’s a comment about just this, forwarding root’s e-mail, and under that a line that looks like this:

root: me@my.domain

Uncomment it (remove the leading # and space), and replace me@mydomain with username for your
LDAP account on your FreeBSD system @cs470.internal (the domain for our private networks). For
me, it looked like this:

root: peter@cs470.internal

 CS 470 Lab 2

 36

You now know what the at-sign is for in an e-mail address, and how the whole system behind that
works.

When we edit the aliases database, we need to tell the mail subsystem to parse it and re-generate the
database file that sendmail actually references during regular operation (note that there’s an
aliases.db file in /etc/mail).

$ sudo newaliases

Now, do the same alias configuration (all of the prior step) on your OpenBSD VM. The aliases file is
in the same place, you want to substitute in the same data, and you have to run the newaliases
command afterwards.

41. Now test a mail to root on each VM, and verify it works.

$ echo "test" | mail -s test root

Also test e-mail to your LDAP user on each VM.

$ echo "test" | mail -s test peter

Also test e-mail to your local-network e-mail address on each VM.

$ echo "test" | mail -s test peter@cs470.internal

You can tail /var/log/maillog – you may need to use sudo – on both your OpenBSD and FreeBSD
VMs to see whether or not your test worked through through mail servers. You should see your
FreeBSD VM listed as the “relay” and “message accepted for delivery” on OpenBSD. On the FreeBSD
side, you should see sendmail accept the mail, then dovecot save it into an inbox.

Since the e-mail address we’re supplying in our test case here is @cs470.internal, the SMTP service on
OpenBSD (OpenBSD has its own smtpd, and doesn’t use sendmail or postfix) goes out and consults
DNS to find out where to deliver e-mail for the domain “cs470.internal.” It is configured to be its own
name server, and if you look back at what we set up in DNS, we configured an MX record (MX is short
for “mail exchanger”) for the domain cs470.internal, pointing at our FreeBSD system.

On both VMs, run the following command and see what it says …

$ host -t mx cs470.internal

… and run it for your OpenBSD VM by FQDN as well.

$ host -t mx openbsd.cs470.internal

It should report that the preferred mail exchangers for both cs470.internal and openbsd.cs470.internal
are your FreeBSD VM, unless you’re trying to get it working without a second MX record. E-mail should

 CS 470 Lab 2

 37

now be flowing properly between our first two VMs. Check mail logs at both sides if it's not working,
and start from error messages there.

part five: configuring regular maintenance, diagnostic mails, and patching

42. Let’s recoup some resources. Run top and look at its output and see how much RAM your VM is now
not using. My AMD64 FreeBSD VM showed 798MB free; my ARM64 VM showed 693MB of RAM as
“inactive.” Based on this, I shut down and moved both architectures’ FreeBSD VMs down to 256MB
RAM.

43. Back on our FreeBSD VM, let’s set up some cron jobs.

$ sudo crontab -e

Add in the following lines:

0 3 * * * /usr/local/sbin/pkg update
0 4 * * * cd /usr/ports && /usr/local/bin/git pull --ff-only
0 5 * * * /usr/sbin/freebsd-update cron
0 6 * * * /usr/local/sbin/pkg version -l "<"

These four lines will automatically update the package database at 3 AM, pull down updates to the
ports tree at 4 AM, check for updates to FreeBSD (the base operating system) at 5 AM, and finally, give
you a report of packages (that switch after pkg version is the first letter of the word “list”) at 6 AM.
All four jobs will run every day.

If your ports tree has issues updating with git, I recommend this page:
https://people.freebsd.org/~dch/git.html

The pkg version command will match packages for which an updated pre-compiled binary package is
available online or if the ports tree knows how to build a newer version. You can install updates via
pkg with the upgrade verb.

Often time, the package repositories lag behind the ports tree, and this may leave you needing to
update software via the ports tree. If that’s the case, often times what you need to do is to go to the
port directory and run sudo make uninstall && sudo make reinstall. The ports called
portmaster and portupgrade can also help with this task.

!! IMPORTANT NOTE: if ca_root_nss gets updated at any point and LDAP or your certificates stop
working on this VM, you may need to take a look at what you did there.

The ports tree can end up become quite a disk hog after you’ve use it for a while … don’t forget your
friend du from lab zero for finding which file trees consume the most storage. You can issue sudo
make clean at any level of the ports tree to remove old build trees below that directory and reclaim
space.

https://people.freebsd.org/~dch/git.html

 CS 470 Lab 2

 38

‼ REMINDER: I want you to start running your VMs all night, as much as possible, for the duration of
the class, so that these late-night cron jobs turn up some output, and start e-mailing it to you. You will
not be graded on uptime. If you’d rather save on your electricity bill, feel free to change the cron jobs
to run by day.

44. Please take a look at man freebsd-update.

Then, go ahead and patch your FreeBSD VM’s base operating system immediately. This involves first
inspecting our system to determine which (if any) updates to fetch from the FreeBSD team’s systems,
then installing them. Fortunately, freebsd-update allows us to supply multiple verbs on a single
command line.

$ sudo freebsd-update fetch install

As I sit here and type this, there are already patches available for FreeBSD 14.2.

$ sudo freebsd-update fetch install
Looking up update.FreeBSD.org mirrors... none found.
Fetching public key from update.FreeBSD.org... done.
Fetching metadata signature for 14.2-RELEASE from update.FreeBSD.org... done.
Fetching metadata index... done.
Fetching 2 metadata files... done.
Inspecting system... done.
Preparing to download files... done.
Fetching 50 patches.....10....20....30....40....50 done.
Applying patches... done.
The following files will be updated as part of updating to
14.2-RELEASE-p2:
/bin/freebsd-version
/boot/kernel/cd9660.ko
/boot/kernel/ext2fs.ko
/boot/kernel/kernel
/boot/kernel/tarfs.ko
/usr/bin/slogin
/usr/bin/ssh
/usr/bin/ssh-add
/usr/bin/ssh-agent
/usr/bin/ssh-keygen
/usr/include/isofs/cd9660/iso.h
…

When patching in the future, you’ll likely just have to supply the install verb, as the overnight job we
set up with crontab will automatically download any available updates for you, and send you an e-mail
to let you know of their availability.

How will you get that e-mail? Glad you asked.

part six: configure an e-mail client

Mac users, use Mail.app. Windows and Linux users, I recommend getting Thunderbird … it’s free, way better
than the Windows mail client, and far easier to configure than Outlook, if you’re on Windows. Linux users,
you probably have Thunderbird installed along with your operating system. If you don’t, go get it.

 CS 470 Lab 2

 39

No matter which operating system you’re on, set up a mail client to get e-mail from the IMAP server on
freebsd.cs470.internal … because we set this up in /etc/hosts on your host operating system, your mail
program should be able to aim there without changing your host operating system’s DNS configuration to aim
at your OpenBSD VM.

If you get certificate warnings, check them out! You should NOT get any certificate errors if you did
everything correctly.

If you get your earlier test e-mails in your mail client, mission accomplished.

Other problems here setting up a mail client? I want you to web search them. Whatever problem you have
setting up that e-mail program, I guarantee you’re not the first person to have it. I’ve spoon-fed you enough
for today.

</lab2>

